Matching Items (9)
Filtering by

Clear all filters

156483-Thumbnail Image.png
Description
The concept of this thesis came up as a part of the efforts being devoted around the world to reduce energy consumption, CO2 emissions, global warming and ozone layer depletion. In the United States, HVAC units in residential buildings consumed about 350 billion kWh in 2017 [1],[2]. Although HVAC manufacturers

The concept of this thesis came up as a part of the efforts being devoted around the world to reduce energy consumption, CO2 emissions, global warming and ozone layer depletion. In the United States, HVAC units in residential buildings consumed about 350 billion kWh in 2017 [1],[2]. Although HVAC manufacturers are investing in new technologies and more efficient products to reduce energy consumption, there is still room for further improvement.

One way of reducing cooling and heating energy in residential buildings is by allowing the centralized HVAC unit to supply conditioned air to only occupied portions of the house by applying smart HVAC zoning. According to the United States Energy Information Administration [3], the percentage of houses equipped with centralized HVAC units is over 70%, which makes this thesis applicable to the majority of houses in the United States. This thesis proposes to implement HVAC zoning in a smart way to eliminate all human errors, such as leaving the AC unit on all day, which turns out to be causing a serious amount of energy to be wasted.

The total amount of energy that could be saved by implementing the concepts presented in this thesis in all single-family houses in the U.S. is estimated to be about 156 billion kWh annually. This amount of energy reduction is proportional to the electricity bills and the amount of dollars paid annually on energy that is technically being wasted.
ContributorsFairag, Amr (Author) / Phelan, Patrick (Thesis advisor) / Bocanegra, Luis (Committee member) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2018
157170-Thumbnail Image.png
Description
In this research, a new cutting edge wear estimator for micro-endmilling is developed and the reliabillity of the estimator is evaluated. The main concept of this estimator is the minimum chip thickness effect. This estimator predicts the cutting edge radius by detecting the drop in the chip production rate as

In this research, a new cutting edge wear estimator for micro-endmilling is developed and the reliabillity of the estimator is evaluated. The main concept of this estimator is the minimum chip thickness effect. This estimator predicts the cutting edge radius by detecting the drop in the chip production rate as the cutting edge of a micro- endmill slips over the workpiece when the minimum chip thickness becomes larger than the uncut chip thickness, thus transitioning from the shearing to the ploughing dominant regime. The chip production rate is investigated through simulation and experiment. The simulation and the experiment show that the chip production rate decreases when the minimum chip thickness becomes larger than the uncut chip thickness. Also, the reliability of this estimator is evaluated. The probability of correct estimation of the cutting edge radius is more than 80%. This cutting edge wear estimator could be applied to an online tool wear estimation system. Then, a large number of cutting edge wear data could be obtained. From the data, a cutting edge wear model could be developed in terms of the machine control parameters so that the optimum control parameters could be applied to increase the tool life and the machining quality as well by minimizing the cutting edge wear rate.

In addition, in order to find the stable condition of the machining, the stabillity lobe of the system is created by measuring the dynamic parameters. This process is needed prior to the cutting edge wear estimation since the chatter would affect the cutting edge wear and the chip production rate. In this research, a new experimental set-up for measuring the dynamic parameters is developed by using a high speed camera with microscope lens and a loadcell. The loadcell is used to measure the stiffness of the tool-holder assembly of the machine and the high speed camera is used to measure the natural frequency and the damping ratio. From the measured data, a stability lobe is created. Even though this new method needs further research, it could be more cost-effective than the conventional methods in the future.
ContributorsLee, Jue-Hyun (Author) / SODEMANN, ANGELA A (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Hsu, Keng (Committee member) / Artemiadis, Panagiotis (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2019
155687-Thumbnail Image.png
Description
Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery

Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery dates. Discrete Event Simulation (DES) models are often used to model these complex manufacturing systems in order to generate estimates of the cycle time distribution. However, building models and executing them consumes sufficient time and resources. The objective of this research is to determine the influence of input parameters on the cycle time distribution of a semiconductor or high volume electronics manufacturing system. This will help the decision makers to implement system changes to improve the predictability of their cycle time distribution without having to run simulation models. In order to understand how input parameters impact the cycle time, Design of Experiments (DOE) is performed. The response variables considered are the attributes of cycle time distribution which include the four moments and percentiles. The input to this DOE is the output from the simulation runs. Main effects, two-way and three-way interactions for these input variables are analyzed. The implications of these results to real world scenarios are explained which would help manufactures understand the effects of the interactions between the input factors on the estimates of cycle time distribution. The shape of the cycle time distributions is different for different types of systems. Also, DES requires substantial resources and time to run. In an effort to generalize the results obtained in semiconductor manufacturing analysis, a non- complex system is considered.
ContributorsSalvi, Tanushree Ashutosh (Author) / Bekki, Jennifer M (Thesis advisor) / Sodemann, Angela (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017
168390-Thumbnail Image.png
Description
Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland

Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland Cement (OPC) has not changed over the past century. A linear refractive Fresnel lens application in cement production process is investigated in this research to provide the thermal power required to raise the temperature of lime up to 623 K (350C) with zero carbon emissions for stage two in a new proposed two-stage production process. The location is considered to be Phoenix, Arizona, with a linear refractive Fresnel lens facing south, tilted 33.45 equaling the location latitude, and concentrating solar beam radiation on an evacuated tube collector with tracking system continuously rotating about the north-south axis. The mathematical analysis showed promising results based on averaged monthly values representing an average hourly useful thermal power and receiver temperature during day-light hours for each month throughout the year. The maximum average hourly useful thermal power throughout the year was obtained for June as 33 kWth m-2 with a maximum receiver temperature achieved of 786 K (513C), and the minimum useful thermal power obtained during the month of December with 27 kWth m-2 and a minimum receiver temperature of 701 K (428C).
ContributorsAlkhuwaiteem, Mohammad (Author) / Phelan, Patrick (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021
158641-Thumbnail Image.png
Description
Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through

Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through phase transition processes over a relatively narrow temperature range. PCMs have a wide range of operating temperatures and therefore can be used in various applications such as stand-alone heat storage in a renewable energy system, thermal storage in buildings, water heating systems, etc. In this dissertation, various PCMs are incorporated and investigated numerically and experimentally with different applications namely a thermochemical metal hydride (MH) storage system and thermal storage in buildings. In the second chapter, a new design consisting of an MH reactor encircled by a cylindrical sandwich bed packed with PCM is proposed. The role of the PCM is to store the heat released by the MH reactor during the hydrogenation process and reuse it later in the subsequent dehydrogenation process. In such a system, the exothermic and endothermic processes of the MH reactor can be utilized effectively by enhancing the thermal exchange between the MH reactor and the PCM bed. Similarly, in the third chapter, a novel design that integrates the MH reactor with cascaded PCM beds is proposed. In this design, two different types of PCMs with different melting temperatures and enthalpies are arranged in series to improve the heat transfer rate and consequently shorten the time duration of the hydrogenation and dehydrogenation processes. The performance of the new designs (in chapters 2 and 3) is investigated numerically and compared with the conventional designs in the literature. The results indicate that the new designs can significantly enhance the time duration of MH reaction (up to 87%). In the fourth chapter, organic coconut oil PCM (co-oil PCM) is explored experimentally and numerically for the first time as a thermal management tool in building applications. The results show that co-oil PCM can be a promising solution to improve the indoor thermal environment in semi-arid regions.
ContributorsAlqahtani, Talal (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Mellouli, Sofiene (Committee member) / Wang, Robert (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2020
158810-Thumbnail Image.png
Description
Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be

Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be implemented in these areas due to their centralized large-scale design. In addition, these methods require intensive maintenance, and sometimes do not operate in high salinity feedwater. Membrane distillation (MD) is one technology that can potentially overcome these challenges and has received increasing attention in the last 15 years. The driving force of MD is the difference in vapor pressure across a microporous hydrophobic membrane. Compared to conventional membrane-based technologies, MD can treat high concentration feedwater, does not need intensive pretreatment, and has better fouling resistance. More importantly, MD operates at low feed temperatures and so it can utilize low–grade heat sources such as solar energy for its operation. While the integration of solar energy and MD was conventionally indirect (i.e. by having two separate systems: a solar collector and an MD module), recent efforts were focused on direct integration where the membrane itself is integrated within a solar collector aiming to have a more compact, standalone design suitable for small-scale applications. In this dissertation, a comprehensive review of these efforts is discussed in Chapter 2. Two novel direct solar-powered MD systems were proposed and investigated experimentally: firstly, a direct contact MD (DCMD) system was designed by placing capillary membranes within an evacuated tube solar collector (ETC) (Chapter 3), and secondly, a submerged vacuum MD (S-VMD) system that uses circulation and aeration as agitation techniques was investigated (Chapter 4). A maximum water production per absorbing area of 0.96 kg·m–2·h–1 and a thermal efficiency of 0.51 were achieved. A final study was conducted to investigate the effect of ultrasound in an S-VMD unit (Chapter 5), which significantly enhanced the permeate flux (up to 24%) and reduced the specific energy consumption (up to 14%). The results add substantially to the understanding of integrating ultrasound with different MD processes.
ContributorsBamasag, Ahmad (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Wang, Liping (Committee member) / Bocanegra, Luis (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
158377-Thumbnail Image.png
Description
In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to

In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to determine the best combination ratio of materials to achieve high moisture swing and a good turnout of printed sorbents. The maximum load limit of the liquid photopolymer resin to enable printability of sorbents was found to be 44%. A series of moisture swing experiments was conducted to investigate the adsorption and desorption performance of the 3D-printed sorbents and compare them with the performance of IER samples prepared by a conventional approach. Results from these experiments conducted indicate that the printed sorbents showed less CO2 adsorptive characteristics compared to the conventional IER sample. It is proposed for future research that a liquid photopolymer resin made up of an IER be synthesized in order to improve the CO2-capturing ability of manufactured sorbents.
ContributorsObeng-Ampomah, Terry (Author) / Phelan, Patrick (Thesis advisor) / Lackner, Klaus (Committee member) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2020
161289-Thumbnail Image.png
Description
The tire blowout is potentially one of the most critical accidents that may occur on the road. Following a tire blowout, the mechanical behavior of the tire is extremely affected and the forces generating from the interaction of the tire and the ground are redistributed. This severe change in the

The tire blowout is potentially one of the most critical accidents that may occur on the road. Following a tire blowout, the mechanical behavior of the tire is extremely affected and the forces generating from the interaction of the tire and the ground are redistributed. This severe change in the mechanism of tire force generation influences the dynamic characteristics of the vehicle significantly. Thus, the vehicle loses its directional stability and has a risk of departing its lane and colliding with other vehicles or the guardrail. This work aims to further broaden our current knowledge of the vehicle dynamic response to a blowout scenario during both rectilinear and curvilinear motions. To that end, a fourteen degrees of freedom full vehicle model combined with the well-grounded Dugoff’s tire models is developed and validated using the high fidelity MSC Adams package. To examine the effect of the tire blowout on the dynamic behavior of the vehicle, a series of tests incorporating a tire blowout is conducted in both rectilinear and curvilinear maneuvers with different tire burst locations. It is observed that the reconstruction of the tire forces resulting from blowout leads to a substantial change in the dynamics of the vehicle as well as a severe directional instability and possibly a rollover accident. Consequently, a corrective safety control system utilizing a braking/traction torque actuation mechanism is designed. The basic idea of the stability controller is to produce a regulated amount of input torque on one or more wheels apart from the blown tire. The proposed novel control-oriented model eliminates the simplifying assumptions used in the design of such controllers. Furthermore, a double integrator was augmented to enhance the steady-state performance of the sliding mode closed-loop system. The chattering problem stemmed by the switching nature of the controller is diminished through tuning the slope of saturation function. Different apparatuses are used in terms of actuation, using an individual front actuator, utilizing multi-actuator, and using two-wheel braking torques successively. It is found that the proposed controllers are perfectly capable of stabilizing the vehicle and robustly track the desired trajectory in straight-line and cornering maneuvers.
ContributorsAl-Quran, Mahdi (Author) / Mayyas, Abdel Ra'Ouf (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Chen, Yan (Committee member) / Ren, Yi (Committee member) / Yong, Sze (Committee member) / Arizona State University (Publisher)
Created2021
161601-Thumbnail Image.png
Description
Inspired by the design of lightweight cellular structures in nature, humans have made cellular solids for a wide range of engineering applications. Cellular structures composed of solid and gaseous phases, and an interconnected network of solid struts or plates that form the cell's edges and faces. This makes them an

Inspired by the design of lightweight cellular structures in nature, humans have made cellular solids for a wide range of engineering applications. Cellular structures composed of solid and gaseous phases, and an interconnected network of solid struts or plates that form the cell's edges and faces. This makes them an ideal candidate for numerous energy absorption applications in the military, transportation, and automotive industries. The objective of the thesis is to study the energy-absorption of multi-material cellular structures. Cellular structures made from Acrylonitrile-Butadiene-Styrene (ABS) a thermoplastic polymer and Thermoplastic Polyurethane (TPU) a thermoplastic elastomer were manufactured using dual extrusion 3D printing. The surface-based structures were designed with partitions to allocate different materials using Matlab and nTopology. Aperiodicity was introduced to the design through perturbation. The specimens were designed for two wall thicknesses - 0.5mm and 1mm, respectively. In total, 18 specimens were designed and 3D printed. All the specimens were tested under quasi-static compression. A detailed analysis was performed to study the energy absorption metrics and draw conclusions, with emphasis on specific energy absorbed as a function of relative density, efficiency, and peak stress of the specimens to hypothesize and validate mechanisms for observed behavior. All the specimens were analyzed to draw comparisons across designs.
ContributorsVarma, Rajeshree Pawan (Author) / Bhate, Dhruv (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2021