Matching Items (3)
Filtering by

Clear all filters

136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
155117-Thumbnail Image.png
Description
Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular dynamics (MD) simulations are utilized in conjunction with physical measurements to inform theoretical understanding of the nature of these systems, and this theoretical understanding is related to practical applications—in particular, the development of a low-temperature liquid electrolyte for use in molecular electronic transducer (MET) seismometers, and particle self-assembly and transport at ionic liquid/liquid interfaces such as those in Pickering emulsions.

The homogenous mixture of 1-butyl-3-methylimidazolium iodide and water is examined extensively through MD as well as physical characterization of properties. Molecular ordering within the liquid mixture is related to macroscopic properties. These mixtures are then used as the basis of an electrolyte with unusual characteristics, specifically a wide liquid temperature range with an extremely low lower bound combined with relatively low viscosity allowing excellent performance in the MET sensor. Electrolyte performance is further improved by the addition of fullerene nanoparticles, which dramatically increase device sensitivity. The reasons behind this effect are explored by testing the effect of graphene surface size and through MD simulations of fullerene and a silica nanoparticle (for contrast) in [BMIM][I]/water mixtures.

Immiscible ionic liquid/water systems are explored through MD studies of particles at IL/water interfaces. By increasing the concentration of hydrophobic nanoparticles at the IL/water interface, one study discovers the formation of a commingled IL/water/particle pseudo-phase, and relates this discovery to previously-observed unique behaviors of these interfaces, particularly spontaneous particle transport across the interface. The other study demonstrates that IL hydrophobicity can influence the deformation of thermo-responsive soft particles at the liquid/liquid interface.
ContributorsNickerson, Stella Day (Author) / Dai, Lenore L (Thesis advisor) / Yu, Hongyu (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2016
161871-Thumbnail Image.png
Description
Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in

Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in the design and optimization of such materials. This dissertation encompasses the utilization of molecular dynamics simulations and quantum calculations in two fields of functional materials: electrolytes and semiconductors. Molecular dynamics (MD) simulations were performed on ionic liquid-based electrolyte systems to identify molecular interactions, structural changes, and transport properties that are often reflected in experimental results. The simulations aid in the development process of the electrolyte systems in terms of concentrations of the constituents and can be invoked as a complementary or predictive tool to laboratory experiments. The theme of this study stretches further to include computational studies of the reactivity of atomic layer deposition (ALD) precursors. Selected aminosilane-based precursors were chosen to undergo density functional theory (DFT) calculations to determine surface reactivity and viability in an industrial setting. The calculations were expanded to include the testing of a semi-empirical tight binding program to predict growth per cycle and precursor reactivity with a high surface coverage model. Overall, the implementation of computational methodologies and techniques within these applications improves materials design and process efficiency while streamlining the development of new functional materials.
ContributorsGliege, Marisa Elise (Author) / Dai, Lenore (Thesis advisor) / Derecskei-Kovacs, Agnes (Thesis advisor) / Muhich, Christopher (Committee member) / Emady, Heather (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021