Matching Items (5)
Filtering by

Clear all filters

137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137708-Thumbnail Image.png
Description
Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle

Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle surface chemistries were investigated: (1) hydrocarbon-saturated and (2) silanol-saturated, representing hydrophobic and hydrophilic particles, respectively. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]-[PF6]) as a model IL, these nanoparticles were allowed to equilibrate at the IL/water and IL/hexane interfaces to observe the interfacial self-assembled structures. At the IL/water interface, the hydrocarbon-based nanoparticles were nearly completely absorbed by the IL, while the silica nanoparticles maintained equal volume in both phases. At the IL/hexane interface, the hydrocarbon nanoparticles maintained minimal interactions with the IL, whereas the silica nanoparticles were nearly completely absorbed by it. Studies of these two types of nanoparticles immersed in the bulk IL indicate that the surface chemistry has a great effect on the corresponding IL liquid structure. These effects include layering of the ions, hydrogen bonding, and irreversible absorption of some ions to the silica nanoparticle surface. These effects are quantified with respect to each nanoparticle. The results suggest that ILs likely exhibit this absorption capability because they can form solvation layers with reduced dynamics around the nanoparticles.
ContributorsMachas, Michael Stafford (Author) / Dai, Lenore (Thesis director) / Lind, Mary Laura (Committee member) / Frost, Denzil (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
135478-Thumbnail Image.png
Description
The following thesis documents a two-fold approach to investigate challenges pertaining to water purification, first through a meta-analysis of ionic liquid toxicity, then through experimentation aimed at developing water pre-treatment membranes. Ionic liquids (ILs) are salts with low melting points, typically liquid at room temperature. Several extraordinary physical attributes, e.g.

The following thesis documents a two-fold approach to investigate challenges pertaining to water purification, first through a meta-analysis of ionic liquid toxicity, then through experimentation aimed at developing water pre-treatment membranes. Ionic liquids (ILs) are salts with low melting points, typically liquid at room temperature. Several extraordinary physical attributes, e.g. low viscosity, high conductivity, low to no vapor pressure, etc., and seemingly unlimited combinations available, have pushed IL research to the forefront of many research fronts. Concerns are raised as ionic liquids are rushed into commercial production without sufficient environmental regulation. Research has shown that the chemicals are in fact toxic, yet have developed a reputation for being “green” chemicals due to select physical attributes and applications. The meta-analysis discussed focuses on industry perception of ionic liquid toxicity through a patent review, and considers toxicity of ILs comparatively against other chemical families with well-established toxicity. The meta-analysis revealed that the total patent literature pertaining to ILs (n=3358) resulted in 112 patents that addressed the toxicity of ILs, and notably few (n=17) patents defined ILs as toxic, representing only 0.51% of the evaluated body of work on intellectual property claims. Additionally, toxicity of ionic liquids is comparable to that of other chemical families.
The objective of the experimentation was to explore the effect of crosslinker chain length on the morphology of nanofiber mats. Specifically, poly(vinyl alcohol (PVA) was electrospun into nanofiber mats and poly(ethylene) glycol bis(carboxylic acid) (PEG diacid) was used as the crosslinking agent. As-spun fibers had average fiber diameter of 70 ± 30 nm with an average pore size of 0.10 ± 0.16 μm^2. The fiber diameter for the mats crosslinked with the shorter PEG diacid (Mn = 250) increased to 110 ± 40 nm with an average pore size of 0.11 ± 0.04 μm^2. The mats crosslinked with the longer PEG diacid (Mn = 600) had fiber diameters of 180 ± 10 nm with an average pore size 0.01 ± 0.02 μm^2.
ContributorsRomero, Felicia Navidad (Author) / Green, Matthew D. (Thesis director) / Lind, Mary Laura (Committee member) / Long, Timothy E. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05