Matching Items (10)

Filtering by

Clear all filters

149976-Thumbnail Image.png

Addicted to autophagy: Ph+ B-ALL may acquire iImatinib-resistance and enhanced malignancy through a highly-active autophagy pathway

Description

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.

Contributors

Agent

Created

Date Created
  • 2011

150811-Thumbnail Image.png

Improving expression vectors for recombinant protein production in plants

Description

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and lack of efficient co-expression vectors for the production of multi-protein complexes. This study report that tobacco Extensin (Ext) gene 3' untranslated region (UTR) can be broadly used to enhance recombinant protein expression in plants. Extensin is the hydroxyproline-rich glycoprotein that constitutes the major protein component of cell walls. Using transient expression, it was found that the Ext 3' UTR increases recombinant protein expression up to 13.5- and 6-fold in non-replicating and replicating vector systems, respectively, compared to previously established terminators. Enhanced protein accumulation was correlated with increased mRNA levels associated with reduction in read-through transcription. Regions of Ext 3' UTR essential for maximum gene expression included a poly-purine sequence used as a major poly-adenylation site. Furthermore, modified bean yellow dwarf virus (BeYDV)-based vectors designed to allow co-expression of multiple recombinant genes were constructed and tested for their performance in driving transient expression in plants. Robust co-expression and assembly of heavy and light chains of the anti-Ebola virus monoclonal antibody 6D8, as well as E. coli heat-labile toxin (LT) were achieved with the modified vectors. The simultaneous co-expression of three fluoroproteins using the single replicon, triple cassette is demonstrated by confocal microscopy. In conclusion, this study provides an excellent tool for rapid, cost-effective, large-scale manufacturing of recombinant proteins for use in medicine and industry.

Contributors

Agent

Created

Date Created
  • 2012

150878-Thumbnail Image.png

Study of Edwardsiella ictaluri conserved genes towards the development of an attenuated recombinant vaccine for fish host

Description

Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens

Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that control virulence factors have been successfully used as measure to construct live attenuated bacterial vaccines for mammals and birds. Here, I hypothesize that evolutionary conserved genes, which control virulence factors or are essential for bacterial physiology in Enterobacteriaceae, could be used as universal tools to design live attenuated recombinant bacterial vaccines from fish to mammals. The evolutionary conserved genes that control virulence factors, crp and fur, and the essential gene for the synthesis of the cell wall, asd, were studied in Edwardsiella ictaluri to develop a live recombinant vaccine for fish host. The genus Edwardsiella is one of the most ancient represent of the Enterobacteriaceae family. E. ictaluri, a host restricted pathogen of catfish (Ictalurus punctatus), is the causative agent of the enteric septicemia and one of the most important pathogens of this fish aquaculture. Although, crp and fur control different virulence factors in Edwardsiella, in comparison to other enterics, individual deletion of these genes triggered protective immune response at the systemic and mucosal level of the fish. Deletion of asdA gene allowed the creation of a balanced-lethal system to syntheses heterologous antigens. I concluded that crp, fur and asd could be universally used to develop live attenuate recombinant Enterobacteriaceae base vaccines for different hosts.

Contributors

Agent

Created

Date Created
  • 2012

153589-Thumbnail Image.png

Characterizing the molecular genetic, phenotypic and virulence properties of the invasive nontyphoidal Salmonella strain D23580: an integrated approach

Description

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested.

Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses.

Contributors

Agent

Created

Date Created
  • 2015

151241-Thumbnail Image.png

From plasma peptide to phenotype: the emerging role of quiescin sulfhydryl oxidase 1 in tumor cell biology

Description

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing for QSOX1 in tumor tissue and discovered that QSOX1 is highly over-expressed in pancreatic and breast tumors. QSOX1 is a FAD-dependent sulfhydryl oxidase that is extremely efficient at forming disulfide bonds in nascent proteins. While the enzymology of QSOX1 has been well studied, the tumor biology of QSOX1 has not been studied. To begin to determine the advantage that QSOX1 over-expression provides to tumors, short hairpin RNA (shRNA) were used to reduce the expression of QSOX1 in human tumor cell lines. Following the loss of QSOX1 growth rate, apoptosis, cell cycle and invasive potential were compared between tumor cells transduced with shQSOX1 and control tumor cells. Knock-down of QSOX1 protein suppressed tumor cell growth but had no effect on apoptosis and cell cycle regulation. However, shQSOX1 dramatically inhibited the abilities of both pancreatic and breast tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, shQSOX1-transduced tumor cells secreted MMP-2 and -9 that were less active than MMP-2 and -9 from control cells. Taken together, these results suggest that the mechanism of QSOX1-mediated tumor cell invasion is through the post-translational activation of MMPs. This dissertation represents the first in depth study of the role that QSOX1 plays in tumor cell biology.

Contributors

Agent

Created

Date Created
  • 2012

151359-Thumbnail Image.png

Investigation of tumor frame shift antigens for prophylactic cancer vaccine, cancer detection and tumorigenicity

Description

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.

Contributors

Agent

Created

Date Created
  • 2012

154702-Thumbnail Image.png

A vaccine to close the window of opportunity for measles infection

Description

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would allow safe and effective immunization at a younger age. I generated two modified MVs with increased expression of the hemagglutinin (H) protein, the most important viral antigen for inducing protective neutralizing immunity, in the background of a current vaccine-equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, expressed and secreted truncated, soluble H protein to its extracellular environment. The alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable resistance to in vitro neutralization. In initial screening in adult mouse models of vaccination, both modified MVs proved more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced protective immunity in the presence of low levels of artificially introduced passive immunity that mimic the passive maternal immunity that currently limits vaccination of young infants, and that strongly inhibited responses to the current vaccine-equivalent. Finally, I developed a more physiological infant-like mouse model for MV vaccine testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent transfer passive immunity to their pups. This model will allow additional preclinical evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in this dissertation I identify a promising candidate, MVvac2-H2, for a next generation measles vaccine.

Contributors

Agent

Created

Date Created
  • 2016

149526-Thumbnail Image.png

Gene annotation using the proteome

Description

While the entire human genome has been sequenced, the understanding of its functional elements remains unclear. The Encyclopedia of DNA Elements (ENCODE) project analyzed 1% of the human genome and

While the entire human genome has been sequenced, the understanding of its functional elements remains unclear. The Encyclopedia of DNA Elements (ENCODE) project analyzed 1% of the human genome and found that the majority of the human genome is transcribed, including non-protein coding regions. The hypothesis is that some of the "non-coding" sequences are translated into peptides and small proteins. Using mass spectrometry numerous peptides derived from the ENCODE transcriptome were identified. Peptides and small proteins were also found from non-coding regions of the 1% of the human genome that the ENCODE did not find transcripts for. A large portion of these peptides mapped to the intronic regions of known genes, thus it is suspected that they may be undiscovered exons present in alternative spliceoforms of certain genes. Further studies proved the existence of polyadenylated RNAs coding for these peptides. Although their functional significance has not been determined, I anticipate the findings will lead to the discovery of new splice variants of known genes and possibly new transcriptional and translational mechanisms.

Contributors

Agent

Created

Date Created
  • 2010

150658-Thumbnail Image.png

Multifaceted regulation of V(D)J recombination

Description

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.

Contributors

Agent

Created

Date Created
  • 2012

150452-Thumbnail Image.png

Immunosignature of Alzheimer's disease

Description

The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This

The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This is relevant because AD is the principal cause of dementia, and yet, no specific diagnostic tests are universally employed in clinical practice to predict, diagnose or monitor disease progression. In particular, I describe herein a proteomic platform developed at the Center for Innovations in Medicine (CIM) consisting of a slide with 10.000 random-sequence peptides printed on its surface, which is used as the solid phase of an immunoassay where antibodies of interest are allowed to react and subsequently detected with a labeled secondary antibody. The pattern of antibody binding to the microarray is unique for each individual animal or person. This thesis will evaluate the versatility of the microarray platform and how it can be used to detect and characterize the binding patterns of antibodies relevant to the pathophysiology of AD as well as the plasma samples of animal models of AD and elderly humans with or without dementia. My specific aims were to evaluate the emergence and stability of immunosignature in mice with cerebral amyloidosis, and characterize the immunosignature of humans with AD. Plasma samples from APPswe/PSEN1-dE9 transgenic mice were evaluated longitudinally from 2 to 15 months of age to compare the evolving immunosignature with non-transgenic control mice. Immunological variation across different time-points was assessed, with particular emphasis on time of emergence of a characteristic pattern. In addition, plasma samples from AD patients and age-matched individuals without dementia were assayed on the peptide microarray and binding patterns were compared. It is hoped that these experiments will be the basis for a larger study of the diagnostic merits of the microarray-based immunoassay in dementia clinics.

Contributors

Agent

Created

Date Created
  • 2011