Matching Items (5)
Filtering by

Clear all filters

149983-Thumbnail Image.png
Description
Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life

Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life while being composed of non-living matter. We have introduced a new paradigm of synthetic biology that melds the methods of in vitro evolution with the goals and philosophy of synthetic biology. The Family B proteins represent the first de novo evolved natively folded proteins to be developed with increasingly powerful tools of molecular evolution. These proteins are folded and functional, composed of the 20 canonical amino acids, and in many ways resemble natural proteins. However, their evolutionary history is quite different from natural proteins, as it did not involve a cellular environment. In this study, we examine the properties of DX, one of the Family B proteins that have been evolutionarily optimized for folding stability. Described in chapter 2 is an investigation into the primitive catalytic properties of DX, which seems to have evolved a serendipitous ATPase activity in addition to its selected ATP binding activity. In chapters 3 and 4 we express the DX gene in E. coli cells and observe massive changes in cell morphology, biochemistry, and life cycle. Exposure to DX activates several defense systems in E. coli, including filamentation, cytoplasmic segregation, and reversion to a viable but non-culturable state. We examined these phenotypes in detail and present a model that accounts for how DX causes such a rearrangement of the cell.
ContributorsStomel, Joshua (Author) / Chaput, John C (Thesis advisor) / Korch, Shaleen (Committee member) / Roberson, Robert (Committee member) / Ghirlanda, Gionvanna (Committee member) / Arizona State University (Publisher)
Created2011
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
154018-Thumbnail Image.png
Description
Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.
ContributorsDunn, Matthew Ryan (Author) / Chaput, John C (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2015
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019
153563-Thumbnail Image.png
Description
In vitro selection technologies allow for the identification of novel biomolecules endowed with desired functions. Successful selection methodologies share the same fundamental requirements. First, they must establish a strong link between the enzymatic function being selected (phenotype) and the genetic information responsible for the function (genotype). Second, they must enable

In vitro selection technologies allow for the identification of novel biomolecules endowed with desired functions. Successful selection methodologies share the same fundamental requirements. First, they must establish a strong link between the enzymatic function being selected (phenotype) and the genetic information responsible for the function (genotype). Second, they must enable partitioning of active from inactive variants, often capturing only a small number of positive hits from a large population of variants. These principles have been applied to the selection of natural, modified, and even unnatural nucleic acids, peptides, and proteins. The ability to select for and characterize new functional molecules has significant implications for all aspects of research spanning the basic understanding of biomolecules to the development of new therapeutics. Presented here are four projects that highlight the ability to select for and characterize functional biomolecules through in vitro selection.

Chapter one outlines the development of a new characterization tool for in vitro selected binding peptides. The approach enables rapid screening of peptide candidates in small sample volumes using cell-free translated peptides. This strategy has the potential to accelerate the pace of peptide characterization and help advance the development of peptide-based affinity reagents.

Chapter two details an in vitro selection strategy for searching entire genomes for RNA sequences that enhance cap-independent initiation of translation. A pool of sequences derived from the human genome was enriched for members that function to enhance the translation of a downstream coding region. Thousands of translation enhancing elements from the human genome are identified and the function of a subset is validated in vitro and in cells.

Chapter three discusses the characterization of a translation enhancing element that promotes rapid and high transgene expression in mammalian cells. Using this ribonucleic acid sequence, a series of full length human proteins is expressed in a matter of only hours. This advance provides a versatile platform for protein synthesis and is espcially useful in situations where prokaryotic and cell-free systems fail to produce protein or when post-translationally modified protein is essential for biological analysis.

Chapter four outlines a new selection strategy for the identification of novel polymerases using emulsion droplet microfluidics technology. With the aid of a fluorescence-based activity assay, libraries of polymerase variants are assayed in picoliter sized droplets to select for variants with improved function. Using this strategy a variant of the 9°N DNA polymerase is identified that displays an enhanced ability to synthesize threose nucleic acid polymers.
ContributorsLarsen, Andrew Carl (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram L (Committee member) / Karr, Timothy L. (Committee member) / Arizona State University (Publisher)
Created2015