Matching Items (10)
Filtering by

Clear all filters

157282-Thumbnail Image.png
Description
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in

the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in

the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting symptoms have already undergone significant neuronal loss without chance for recovery. Analysis of disease specific changes in gene expression directly from human patients can uncover invaluable clues about a still unknown etiology, the potential of which grows exponentially as additional gene regulatory measures are questioned. Epigenetic mechanisms are emerging as important components of neurodegeneration, including PD; the extent to which methylation changes correlate with disease progression has not yet been reported. This collection of work aims to define multiple layers of PD that will work toward developing biomarkers that not only could improve diagnostic accuracy, but also push the boundaries of the disease detection timeline. I examined changes in gene expression, alternative splicing of those gene products, and the regulatory mechanism of DNA methylation in the Parkinson’s disease system, as well as the pathologically related Alzheimer’s disease (AD). I first used RNA sequencing (RNAseq) to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex of patients with PD and PD with dementia (PDD). Next, I performed a longitudinal genome-wide methylation study surveying ~850K CpG methylation sites in whole blood from 189 PD patients and 191 control individuals obtained at both a baseline and at a follow-up visit after 2 years. I also considered how symptom management medications could affect the regulatory mechanism of DNA methylation. In the last chapter of this work, I intersected RNAseq and DNA methylation array datasets from whole blood patient samples for integrated differential analyses of both PD and AD. Changes in gene expression and DNA methylation reveal clear patterns of pathway dysregulation that can be seen across brain and blood, from one study to the next. I present a thorough survey of molecular changes occurring within the idiopathic Parkinson’s disease patient and propose candidate targets for potential molecular biomarkers.
ContributorsHenderson, Adrienne Rose (Author) / Huentelman, Matthew J (Thesis advisor) / Newbern, Jason (Thesis advisor) / Dunckley, Travis L (Committee member) / Jensen, Kendall (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2019
157059-Thumbnail Image.png
Description
Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional

Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional gene regulation and act by targeting the 3'untranslated regions (3'UTRs) of mRNA. MiRNAs are small non-coding RNAs that have the potential to regulate hundreds to thousands of genes and are dysregulated in many prevalent human diseases such as diabetes, Alzheimer's disease, Duchenne muscular dystrophy, and cancer. However, the precise contribution of miRNAs to the pathology of these diseases is not known.

MiRNA-based gene regulation occurs in a tissue-specific manner and is implemented by an interplay of poorly understood and complex mechanisms, which control both the presence of the miRNAs and their targets. As a consequence, the precise contributions of miRNAs to gene regulation are not well known. The research presented in this thesis systematically explores the targets and effects of miRNA-based gene regulation in cell lines and tissues.

I hypothesize that miRNAs have distinct tissue-specific roles that contribute to the gene expression differences seen across tissues. To address this hypothesis and expand our understanding of miRNA-based gene regulation, 1) I developed the human 3'UTRome v1, a resource for studying post-transcriptional gene regulation. Using this resource, I explored the targets of two cancer-associated miRNAs miR-221 and let-7c. I identified novel targets of both these miRNAs, which present potential mechanisms by which they contribute to cancer. 2) Identified in vivo, tissue-specific targets in the intestine and body muscle of the model organism Caenorhabditis elegans. The results from this study revealed that miRNAs regulate tissue homeostasis, and that alternative polyadenylation and miRNA expression patterns modulate miRNA targeting at the tissue-specific level. 3) Explored the functional relevance of miRNA targeting to tissue-specific gene expression, where I found that miRNAs contribute to the biogenesis of mRNAs, through alternative splicing, by regulating tissue-specific expression of splicing factors. These results expand our understanding of the mechanisms that guide miRNA targeting and its effects on tissue-specific gene expression.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Newbern, Jason (Committee member) / Rawls, Alan (Committee member) / Arizona State University (Publisher)
Created2019
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
133038-Thumbnail Image.png
Description
Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that

Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that they do not have the correct cellular localization. The localization of PANK2 was studied through cellular fractionation. We found the precursor form of PANK2, pPANK2, appears to be anchored to the inner membrane of the mitochondria, and the mature form, mPANK2, is located in the inter-membrane space, IMS. However, the IMS of the PKAN causing mutants is completely devoid of mPANK2 which suggests some disease-causing mutations may be mislocalized. In addition, PANK2 catalyzes the first and rate limiting step in Coenzyme A biosynthesis, and in other studies, it has been shown that the CoA biosynthesis enzymes form a complex in yeast. Therefore, we also considered the possibility that PKAN-causing mutations that retain activity have altered interactions with the other CoA biosynthesis enzymes. Coimmunoprecipitation of the proteins in the pathway was done to determine if there were any interactions with PANK2. The results indicate that PANK2 does not directly interact with either PPCS or CoASY, the second and final enzymatic activities in the CoA biosynthesis pathway.
ContributorsHadziahmetovic, Una (Author) / Newbern, Jason (Thesis director) / Kruer, Michael (Thesis director) / Padilla-Lopez, Sergio (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the

The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the bacterial community and the polysaccharide matrix presented by biofilms. The purpose of this investigation is to determine how exposure times in the order of weeks to months affect the MBEC. Using an in vitro approach, Staphylococcus aureus (UAMS-1) and methicillin-resistant Staphylococcus aureus (MRSA) biofilms were produced with a 24 hour growth time and exposed to two antimicrobials, tobramycin and vancomycin, and one combination treatment that consisted of 1:1 tobramycin: vancomycin by weight. Crystal violet screening was used in order to ensure the integrity of the biofilm matrix throughout the full time of exposure. It was determined that UAMS-1 MBECs were lowered after 56 days of exposure than after 5 days for all three treatment groups. MRSA MBECs after 5 days of exposure decreased only with in vancomycin treatment group.
ContributorsSteinhauff, Douglas Busch (Author) / Caplan, Michael (Thesis director) / Overstreet, Derek (Committee member) / Castaneda, Paulo (Committee member) / Materials Science and Engineering Program (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158783-Thumbnail Image.png
Description
Skeletal muscle injury, whether acute or chronic, is characterized by influxes of pro- and anti-inflammatory cells that coordinate with muscle to precisely control the reparative process. This intricate coordination is facilitated by a signaling feedback loop between satellite cells and extravasated immune cells. Regulation of the cytokines and chemokines that

Skeletal muscle injury, whether acute or chronic, is characterized by influxes of pro- and anti-inflammatory cells that coordinate with muscle to precisely control the reparative process. This intricate coordination is facilitated by a signaling feedback loop between satellite cells and extravasated immune cells. Regulation of the cytokines and chemokines that mediate healthy repair is critical for the overall success of fiber regeneration and thus provides a prospective direction for the development of therapeutics aimed at fine-tuning the local inflammatory response. This work describes (1) the contribution of non-myogenic cells in skeletal muscle regeneration, (2) the role of the transcription factor Mohawk (Mkx) in regulating inflammation following acute muscle injury and the identification of an overarching requirement for Mkx in the establishment of a pro-inflammatory response, and (3) characterization of eosinophils in acute and chronic muscle damage. Mice deficient for Mkx exhibited delayed muscle regeneration, accompanied by impaired clearance of necrotic fibers and smaller regenerated fibers. This diminished regenerative capacity was associated with a reduction in the recruitment of pro-inflammatory macrophages to the site of damage. In culture, Mkx-/- bone marrow-derived macrophages displayed reduced proliferative capacity but retained the ability to polarize in response to a pro-inflammatory stimulus. The necessity of Mkx in mounting a robust immune response was further confirmed by an immunological challenge in which Mkx-/- mice exhibited increased susceptibility to Salmonella enterica serovar Typhimurium infection. Significant downregulation of key cytokine and chemokine expression was identified throughout the course of muscle repair in Mkx-/- mice and represents one mechanism in which Mkx regulates the establishment of an inflammatory response. Previous research discovered that Mkx is highly expressed in eosinophils, a type of innate immune cell that participates in disease-fighting and inflammation, however the role of eosinophils in muscle repair is not well described. This work outlines the contribution of eosinophils in muscle repair following acute and chronic injury. In healthy mice, eosinophils were found to inhibit efficient muscle repair following acute injury. Utilizing the mdx-/-utrn-/- muscular dystrophy mouse model, eosinophil depletion via administration of anti-IL-5 antibody significantly improved diaphragm fiber diameter and increased the survival rate during the course of treatment.
ContributorsLynch, Cherie Alissa (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Newbern, Jason (Committee member) / Lake, Douglas (Committee member) / Allen, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
158493-Thumbnail Image.png
Description
Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.
ContributorsPalade, Joanna (Author) / Wilson-Rawls, Norma (Thesis advisor) / Rawls, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2020
158343-Thumbnail Image.png
Description
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by out-of-frame mutations in the dystrophin gene, and the absence of a functional dystrophin protein ultimately leads to instability of the sarcolemma, skeletal muscle necrosis, and atrophy. While the structural changes that

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by out-of-frame mutations in the dystrophin gene, and the absence of a functional dystrophin protein ultimately leads to instability of the sarcolemma, skeletal muscle necrosis, and atrophy. While the structural changes that occur in dystrophic muscle are well characterized, resulting changes in muscle-specific gene expression that take place in dystrophin’s absence remain largely uncharacterized, as they are potentially obscured by the characteristic chronic inflammation in dystrophin deficient muscle.

The conservation of the dystrophin gene across metazoans suggests that both vertebrate and invertebrate model systems can provide valuable contributions to the understanding of DMD initiation and progression. Specifically, the invertebrate C. elegans possesses a dystrophin protein ortholog, dys-1, and a mild inflammatory response that is inactive in the muscle, allowing for the characterization of transcriptome rearrangements affecting disease progression independently of inflammation. Furthermore, C. elegans do not possess a satellite cell equivalent, meaning muscle regeneration does not occur. This makes C. elegans unique in that they allow for the study of dystrophin deficiencies without muscle regeneration that may obscure detection of subtle but consequential changes in gene expression.

I hypothesize that gaining a comprehensive definition of both the structural and signaling roles of dystrophin in C. elegans will improve the community’s understanding of the progression of DMD as a whole. To address this hypothesis, I have performed a phylogenetic analysis on the conservation of each member of the dystrophin associated protein complex (DAPC) across 10 species, established an in vivo system to identify muscle-specific changes in gene expression in the dystrophin-deficient C. elegans, and performed a functional analysis to test the biological significance of changes in gene expression identified in my sequencing results. The results from this study indicate that in C. elegans, dystrophin may have a signaling role early in development, and its absence may activate compensatory mechanisms that counteract disease progression. Furthermore, these findings allow for the identification of transcriptome changes that potentially serve as both independent drivers of disease and potential therapeutic targets for the treatment of DMD.
ContributorsHrach, Heather (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Newbern, Jason (Committee member) / Rawls, Jeffery (Committee member) / Arizona State University (Publisher)
Created2020
161392-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is the world’s leading cause of dementia and is the sixthleading cause of death in the United States. While AD has been studied for over a century, little progress has been made in terms of treating or preventing disease progression; therefore, new therapeutic drug targets must be

Alzheimer’s disease (AD) is the world’s leading cause of dementia and is the sixthleading cause of death in the United States. While AD has been studied for over a century, little progress has been made in terms of treating or preventing disease progression; therefore, new therapeutic drug targets must be identified. Current clinical trials focus on inhibiting Beta- Secretase 1 (BACE1), the major enzyme involved in the formation of the amyloid beta (Abeta) peptide fragments that aggregate to form insoluble plaques in the brains of AD patients. However, many of these clinical trials have been halted due to neurological effects or organ damage with no substantial cognitive improvements. Because the current leading theory of AD is that the buildup of amyloid plaques leads to metabolic changes that result in the intraneuronal accumulation of hyperphosphorylated Microtubule Associated Protein Tau (TAU, encoded by the MAPT gene), which causes cell death resulting in brain atrophy and dementia (known as the Amyloid Cascade Hypothesis), identifying drug targets that modulate Amyloid Precursor Protein (APP) processing – without directly inhibiting BACE1 – may prove to be a viable treatment. In this work, the role of the Adenosine triphosphate Binding Cassette subfamily C member 1 (ABCC1) was studied in the context of AD. Rare mutations in ABCC1 were identified in a familial case of late-onset AD and in a sporadic case of early-onset AD, and previous laboratories have demonstrated that Abeta is a substrate for ABCC1-mediated export. Although the final experiments reveal no significant difference between the mutant and reference alleles, the data demonstrate that overexpression of ABCC1 modulates APP processing, resulting in decreased Abeta formation and increased alpha- secretase cleavage of the APP molecule, likely via transcriptional modulation of genes that are capable of altering APP metabolism. Therefore, pharmacological interventions that increase either ABCC1 expression or activity may be capable of halting, reversing, or preventing disease progression. Many cancer drug development pipelines have been employed to identify compounds that decrease ABCC1 expression or activity, and it is likely that compounds have been identified that have the opposite effect. These drugs should be studied in the context of Alzheimer’s disease.
ContributorsJepsen, Wayne Mathew (Author) / Huentelman, Matthew (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Jensen, Kendall (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021