Matching Items (26)
Filtering by

Clear all filters

152765-Thumbnail Image.png
Description
Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a

Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a neurotropic virus capable of causing meningitis and encephalitis in humans. Currently, there are no therapeutic treatments or vaccines available. The expanding epidemic of WNV demands studies that develop efficacious therapeutics and vaccines and produce them rapidly and inexpensively. In response, our lab developed a plant-derived monoclonal antibody (mAb) (pHu-E16) against DIII (WNV antigen) that is able to neutralize and prevent mice from lethal infection. However, this drug has a short window of efficacy due to pHu-E16's inability to cross the Blood Brain Barrier (BBB) and enter the brain. Here, we constructed a bifunctional diabody, which couples the neutralizing activity of E16 and BBB penetrating activity of 8D3 mAb. We also produced a plant-derived E16 scFv-CH1-3 variant with equivalent specific binding as the full pHu-E16 mAb, but only requiring one gene construct for production. Furthermore, a WNV vaccine based on plant-derived DIII was developed showing proper folding and potentially protective immune response in mice. DV causes severe hemorrhaging diseases especially in people exposed to secondary DV infection from a heterotypic strain. It is hypothesized that sub-neutralizing cross-reactive antibodies from the first exposure aid the second infection in a process called antibody-dependent enhancement (ADE). ADE depends on the ability of mAb to bind Fc receptors (FcγRs), and has become a major roadblock for developing mAb-based therapeutics against DV. We aim to produce an anti-Dengue mAb (E60) in different glycoengineered plant lines that exhibit reduced/differential binding to FcγRs, therefore, reducing or eliminating ADE. We have successfully cloned the molecular constructs of E60, and expressed it in two plant lines with different glycosylation patterns. We demonstrated that both plant-derived E60 mAb glycoforms retained specific recognition and neutralization activity against DV. Overall, our study demonstrates great strives to develop efficacious therapeutics and potent vaccine candidates against Flaviviruses in plant expression systems.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Huffman, Holly A (Committee member) / Steele, Kelly P (Committee member) / Arizona State University (Publisher)
Created2014
153508-Thumbnail Image.png
Description
Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template

Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template region within the vastly larger non-coding RNA. Even among closely related groups of species, telomerase RNA is astonishingly divergent in sequence, length, and secondary structure. This massive disparity is highly prohibitive for telomerase RNA identification from previously unexplored groups of species, which is fundamental for secondary structure determination. Combined biochemical enrichment and computational screening methods were employed for the discovery of numerous telomerase RNAs from the poorly characterized echinoderm lineage. This resulted in the revelation that--while closely related to the vertebrate lineage and grossly resembling vertebrate telomerase RNA--the echinoderm telomerase RNA central domain varies extensively in structure and sequence, diverging even within echinoderms amongst sea urchins and brittle stars. Furthermore, the origins of telomerase RNA within the eukaryotic lineage have remained a persistent mystery. The ancient Trypanosoma telomerase RNA was previously identified, however, a functionally verified secondary structure remained elusive. Synthetic Trypanosoma telomerase was generated for molecular dissection of Trypanosoma telomerase RNA revealing two RNA domains functionally equivalent to those found in known telomerase RNAs, yet structurally distinct. This work demonstrates that telomerase RNA is uncommonly divergent in gross architecture, while retaining critical universal elements.
ContributorsPodlevsky, Joshua (Author) / Chen, Julian (Thesis advisor) / Mangone, Marco (Committee member) / Kusumi, Kenro (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2015
154018-Thumbnail Image.png
Description
Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.
ContributorsDunn, Matthew Ryan (Author) / Chaput, John C (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2015
157059-Thumbnail Image.png
Description
Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional

Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional gene regulation and act by targeting the 3'untranslated regions (3'UTRs) of mRNA. MiRNAs are small non-coding RNAs that have the potential to regulate hundreds to thousands of genes and are dysregulated in many prevalent human diseases such as diabetes, Alzheimer's disease, Duchenne muscular dystrophy, and cancer. However, the precise contribution of miRNAs to the pathology of these diseases is not known.

MiRNA-based gene regulation occurs in a tissue-specific manner and is implemented by an interplay of poorly understood and complex mechanisms, which control both the presence of the miRNAs and their targets. As a consequence, the precise contributions of miRNAs to gene regulation are not well known. The research presented in this thesis systematically explores the targets and effects of miRNA-based gene regulation in cell lines and tissues.

I hypothesize that miRNAs have distinct tissue-specific roles that contribute to the gene expression differences seen across tissues. To address this hypothesis and expand our understanding of miRNA-based gene regulation, 1) I developed the human 3'UTRome v1, a resource for studying post-transcriptional gene regulation. Using this resource, I explored the targets of two cancer-associated miRNAs miR-221 and let-7c. I identified novel targets of both these miRNAs, which present potential mechanisms by which they contribute to cancer. 2) Identified in vivo, tissue-specific targets in the intestine and body muscle of the model organism Caenorhabditis elegans. The results from this study revealed that miRNAs regulate tissue homeostasis, and that alternative polyadenylation and miRNA expression patterns modulate miRNA targeting at the tissue-specific level. 3) Explored the functional relevance of miRNA targeting to tissue-specific gene expression, where I found that miRNAs contribute to the biogenesis of mRNAs, through alternative splicing, by regulating tissue-specific expression of splicing factors. These results expand our understanding of the mechanisms that guide miRNA targeting and its effects on tissue-specific gene expression.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Newbern, Jason (Committee member) / Rawls, Alan (Committee member) / Arizona State University (Publisher)
Created2019
156939-Thumbnail Image.png
Description
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels of the immediate early gene ARC in Nex:Cre and Rbp4:Cre mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ContributorsBjorklund, George Reed (Author) / Newbern, Jason M (Thesis advisor) / Neisewander, Janet (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136192-Thumbnail Image.png
Description
Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore,

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.
ContributorsHalcomb, Michael Jordan (Author) / Chen, Qiang (Thesis director) / Steele, Kelly (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor)
Created2015-05
135235-Thumbnail Image.png
Description
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating,

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.
ContributorsSuresh Kumar, Reshma (Author) / Chen, Qiang (Thesis director) / Zhang, Peiming (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154421-Thumbnail Image.png
Description
One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the

One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the DNA molecule to precisely instruct biological processes in living organisms. The region located between the STOP codon and the poly(A)-tail of the mature mRNA, known as the 3′Untranslated Region (3′UTR), is a key modulator of these activities. It contains numerous sequence elements that are targeted by trans-acting factors that dose gene expression, including the repressive small non-coding RNAs, called microRNAs.

Recent transcriptome data from yeast, worm, plants, and humans has shown that alternative polyadenylation (APA), a mechanism that enables expression of multiple 3′UTR isoforms for the same gene, is widespread in eukaryotic organisms. It is still poorly understood why metazoans require multiple 3′UTRs for the same gene, but accumulating evidence suggests that APA is largely regulated at a tissue-specific level. APA may direct combinatorial variation between cis-elements and microRNAs, perhaps to regulate gene expression in a tissue-specific manner. Apart from a few single gene anecdotes, this idea has not been systematically explored.

This dissertation research employs a systems biology approach to study the somatic tissue dynamics of APA and its impact on microRNA targeting networks in the small nematode C. elegans. In the first aim, tools were developed and applied to isolate and sequence mRNA from worm intestine and muscle tissues, which revealed pervasive tissue-specific APA correlated with microRNA regulation. The second aim provides genetic evidence that two worm genes use APA to escape repression by microRNAs in the body muscle. Finally, in aim three, mRNA from five additional somatic worm tissues was sequenced and their 3′ends mapped, allowing for an integrative study of APA and microRNA targeting dynamics in worms. Together, this work provides evidence that APA is a pervasive mechanism operating in somatic tissues of C. elegans with the potential to significantly rearrange their microRNA regulatory networks and precisely dose their gene expression.
ContributorsBlazie, Stephen M (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Josh (Committee member) / Lake, Doug (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
155158-Thumbnail Image.png
Description
MicroRNAs (miRNAs) are short non-coding RNAs that play key roles during metazoan development, and are frequently misregulated in human disease. MiRNAs regulate gene output by targeting degenerate elements primarily in the 3´ untranslated regions of mRNAs. MiRNAs are often deeply conserved, but have undergone drastic expansions in higher metazoans, leading

MicroRNAs (miRNAs) are short non-coding RNAs that play key roles during metazoan development, and are frequently misregulated in human disease. MiRNAs regulate gene output by targeting degenerate elements primarily in the 3´ untranslated regions of mRNAs. MiRNAs are often deeply conserved, but have undergone drastic expansions in higher metazoans, leading to families of miRNAs with highly similar sequences. The evolutionary advantage of maintaining multiple copies of duplicated miRNAs is not well understood, nor has the distinct functions of miRNA family members been systematically studied. Furthermore, the unbiased and high-throughput discovery of targets remains a major challenge, yet is required to understand the biological function of a given miRNA.

I hypothesize that duplication events grant miRNA families with enhanced regulatory capabilities, specifically through distinct targeting preferences by family members. This has relevance for our understanding of vertebrate evolution, as well disease detection and personalized medicine. To test this hypothesis, I apply a conjunction of bioinformatic and experimental approaches, and design a novel high-throughput screening platform to identify human miRNA targets. Combined with conventional approaches, this tool allows systematic testing for functional targets of human miRNAs, and the identification of novel target genes on an unprecedented scale.

In this dissertation, I explore evolutionary signatures of 62 deeply conserved metazoan miRNA families, as well as the targeting preferences for several human miRNAs. I find that constraints on miRNA processing impact sequence evolution, creating evolutionary hotspots within families that guide distinct target preferences. I apply our novel screening platform to two cancer-relevant miRNAs, and identify hundreds of previously undescribed targets. I also analyze critical features of functional miRNA target sites, finding that each miRNA recognizes surprisingly distinct features of targets. To further explore the functional distinction between family members, I analyze miRNA expression patterns in multiple contexts, including mouse embryogenesis, RNA-seq data from human tissues, and cancer cell lines. Together, my results inform a model that describes the evolution of metazoan miRNAs, and suggests that highly similar miRNA family members possess distinct functions. These findings broaden our understanding of miRNA function in vertebrate evolution and development, and how their misexpression contributes to human disease.
ContributorsWolter, Justin M (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Kusumi, Kenro (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2016