Matching Items (3)
Filtering by

Clear all filters

150063-Thumbnail Image.png
Description
Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures.

Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures. A subset of pathogenic brain-reactive autoantibodies (BRAA) is hypothesized to bind to integral membrane brain proteins, affecting their function, leading to CNS-SLE. I have tested this BRAA hypothesis, using our lupus-mouse model the MRL/lpr mice, and have found it to be a reasonable explanation for some of the manifestations of CNS-SLE. Even when the MRL/lpr had a reduced autoimmune phenotype, their low BRAA sera levels correlated with CNS involvement. The correlation existed between BRAA levels to integral membrane protein and depressive-like behavior. These results were the first to show a correlation between behavioral changes and BRAA levels from brain membrane antigen as oppose to cultured neuronal cells. More accurate means of predicting and diagnosing lupus and CNS-SLE is necessary. Using microarray technology I was able to determine peptide sets that could be predictive and diagnostic of lupus and each specific CNS manifestation. To knowledge no test currently exists that can effectively diagnose lupus and distinguish between each CNS manifestations. Using the peptide sets, I was able to determine possible natural protein biomarkers for each set as well as for five monoclonal BRAA from one MRL/lpr. These biomarkers can provide specific targets for therapy depending on the manifestation. It was necessary to investigate how these BRAA enter the brain. I hypothesized that substance P plays a role in altering the blood-brain barrier (BBB) allowing these BRAA to enter and affect brain function, when bound to its neurokinin-1 receptor (NK-1R). Western blotting results revealed an increase in the levels of NK-1R in the brain of the MRL/lpr compared to the MRL/mp. These MRL/lpr with increased levels of both NK-1R and BRAA displayed CNS dysfunction. Together, these results demonstrate that NK-1R may play a role in CNS manifestations. Overall, the research conducted here, add to the role that BRAA are playing in CNS-lupus.
ContributorsWilliams, Stephanie (Author) / Hoffman, Steven A (Thesis advisor) / Conrad, Cheryl (Committee member) / Chen, Julian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2011
156939-Thumbnail Image.png
Description
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels of the immediate early gene ARC in Nex:Cre and Rbp4:Cre mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ContributorsBjorklund, George Reed (Author) / Newbern, Jason M (Thesis advisor) / Neisewander, Janet (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018
133439-Thumbnail Image.png
Description
Arizona State University and Banner Thunderbird Hospital have partnered to provide pre-med students with an internship at a local emergency department. Students entering into this program will have access to each patient's vital signs, medical imaging, lab tests, and medications. This access presents students with an opportunity to learn about

Arizona State University and Banner Thunderbird Hospital have partnered to provide pre-med students with an internship at a local emergency department. Students entering into this program will have access to each patient's vital signs, medical imaging, lab tests, and medications. This access presents students with an opportunity to learn about a variety of tools used in the assessment and treatment of emergency room patients. In order to enhance the amount of knowledge students take away from the program, I created a handbook summarizing a variety of diagnostic tests and medications. The first section of the handbook (assessment) is spilt up into the three following categories: vital signs, medical imaging, and lab tests. The second section (treatment) consists of one category, medications. Each section was written with emphasis on basic physiology, and is intended to provide pre-med students with a foundation for building further medical knowledge. Although this handbook was tailored to the information students are most likely to encounter working in Banner Thunderbird Hospital's emergency department, it is still appropriate for any student interested in learning about emergency medicine.
ContributorsBecker, Bryson (Author) / Orchinik, Miles (Thesis director) / Washo-Krupps, Delon (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05