Matching Items (6)
Filtering by

Clear all filters

150394-Thumbnail Image.png
Description
Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising

Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a structural protein configuring the enveloped virus particles, and has been suggested to constitute a target of the cellular immunity potentially controlling the viral load. It was hypothesized that HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. Plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a tobacco mosaic virus-based expression system or a combination of both. Results of biophysical, biochemical and electron microscopy characterization demonstrated that plant cells could support not only the formation of HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These particles were purified and utilized in mice immunization experiments. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR - a fusion of MPER and the B-subunit of cholera toxin) were administered to BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens could be elicited in mice systemically primed with VLPs and these responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a robust boosting response against Gag and gp41 when boosted with either candidate. Functional assays of these antibodies are in progress to test the antibodies' effectiveness in neutralizing and preventing mucosal transmission of HIV-1. This immunogenicity of plant-based Gag/dgp41 VLPs represents an important milestone on the road towards a broadly-efficacious and inexpensive subunit vaccine against HIV-1.
ContributorsKessans, Sarah (Author) / Mor, Tsafrir S (Thesis advisor) / Matoba, Nobuyuki (Committee member) / Mason, Hugh (Committee member) / Hogue, Brenda (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
153827-Thumbnail Image.png
Description
Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and

Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and independently folding domain III (DIII) contains epitopes that elicit highly specific neutralizing antibodies. The hepatitis B small surface antigen (HBsAg, S) was used as a scaffold to display DENV 2 DIII on a virus-like particle (VLP). A measles virus (MV) was engineered to vector HBsAg and the hybrid glycoprotein DIII-HBsAg in two different loci (DIII-S). Despite the relatively deleterious effect on replication caused by the insertion of two transcription cassettes, the recombinant virus MVvac2(DIII-S,S)P induced the secretion of DIII-S hybrid VLP with a similar sucrose density as HBsAg particles (1.10-1.12g/ml) and peaked at 48 h post-infection producing 1.3x106 TCID50/ml infectious MV units in vitro. A second recombinant virus, MVvac2(DIII-S)N, was engineered to vector only the hybrid DIII-S. However, it did not induce the secretion of hybrid HBsAg particles in the supernatant of infected cells. The immunogenicity of the recombinant viruses was tested in a MV-susceptible small animal model, the experimental group which received two 105 TCID50 I.P. doses of MVvac2(DIII-S,S)P in a 28 day interval developed a robust immune response against MV (1:1280), HBsAg (787 mIU/ml) and DENV2 (Log10 neutralization index of 1.2) on average. In summary, it is possible to display DENV E DIII on hybrid HBsAg particles vectored by MV that elicit an immune response. This forms the basis for a potential vaccine platform against DENV.
ContributorsHarahap, Indira (Author) / Reyes del Valle, Jorge (Thesis advisor) / Hogue, Brenda G (Thesis advisor) / Lake, Douglas (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2015
155123-Thumbnail Image.png
Description
Despite the approval of a Dengue virus (DV) vaccine in five endemic countries, dengue prevention would benefit from an immunization strategy highly immunogenic in young infants and not curtailed by viral interference. Problematically, infants younger than 9 year of age, whom are particularly prone to Dengue severe infection and death,

Despite the approval of a Dengue virus (DV) vaccine in five endemic countries, dengue prevention would benefit from an immunization strategy highly immunogenic in young infants and not curtailed by viral interference. Problematically, infants younger than 9 year of age, whom are particularly prone to Dengue severe infection and death, cannot be immunized using current approved DV vaccine. The most important issues documented so far are the lack of efficiency and enhancement of the disease in young seronegative recipients, as well as uneven protection against the four DV serotypes. Based on data from clinical trials that showed enhanced performance of dengue vaccines when the host has previous anti-flaviviral immunity, I proposed here an attractive solution to complement the current vaccine: a recombinant measles vaccine vectoring dengue protective antigens to be administered to young infants. I hypothesized that recombinant measles virus expressing Dengue 2 and 4 antigens would successfully induce neutralizing responses against DV2 and 4 and the vaccine cocktail of this recombinant measles can prime anti-flaviviral neutralizing immunity. For this dissertation, I generated and performed preclinical immune assessment for four novel Measles-Dengue (MV-DV) vaccine candidates. I generated four MVs expressing the pre membrane (prM) and full length or truncated (90%) forms of the major envelope (E) from DV2 and DV4. Two virus, MVvac2-DV2(prME)N and MVvac2-DV4(prME), expressed high levels of membrane associated full-length E, while the other two viruses, MVvac2-DV2(prMEsol)N and MVvac2-DV4(prMEsol)N, expressed and secreted truncated, soluble E protein to its extracellular environment. The last two vectored vaccines proved superior anti-dengue neutralizing responses comparing to its corresponding full length vectors. Remarkably, when MVvac2-DV2/4(prMEsol)N recombinant vaccines were combined, the vaccine cocktail was able to prime cross-neutralizing responses against DV 1 and the relatively distant 17D yellow fever virus attenuated strain. Thus, I identify a promising DV vaccination strategy, MVvac2-DV2/4(prMEsol)N, which can prime broad neutralizing immune responses by using only two of the four available DV serotypes. The current MV immunization scheme can be advantageus to prime broad anti-flaviviral neutralizing immunity status, which will be majorly boosted by subsequent chimeric Dengue vaccine approaches.
ContributorsAbdelgalel, Rowida (Author) / Reyes del Valle, Jorge (Thesis advisor) / Mason, Hugh (Thesis advisor) / Lake, Douglas (Committee member) / Stout, Valerie (Committee member) / Frasch, Wayne (Committee member) / Arizona State University (Publisher)
Created2016
189346-Thumbnail Image.png
Description
The expression of complex proteins was studied in multiple plant systems. Recombinant spider silk, which could be utilized for biomedical applications such as coatings or doped into silk fibers, was successfully expressed in Nicotiana. benthamiana wild type and GnGn glycoengineered transgenic plants and purified from endogenous plant proteins which could

The expression of complex proteins was studied in multiple plant systems. Recombinant spider silk, which could be utilized for biomedical applications such as coatings or doped into silk fibers, was successfully expressed in Nicotiana. benthamiana wild type and GnGn glycoengineered transgenic plants and purified from endogenous plant proteins which could be utilized for biomedical applications such as coatings or doped into silk fibers. However, the purification process requires further optimization to result in commercialized production of recombinant spider silk. Green fluorescent protein and Norovirus virus-like particles were expressed in multiple plant systems including alfalfa, beets, lettuce, and spinach, in addition to N. benthamiana, to determine the ability of these plant expression systems to produce vaccine candidates for edible vaccine applications in the agricultural sector as well as low-to-middle income countries. It was determined that alfalfa, beets, and lettuce are potential high production expression systems for edible vaccines however they require further optimization to be commercialized. Lastly, novel virus-like particles and antigen presenting nanoparticles based on the bacteriophage AP205 coat protein and norovirus capsid proteins fused to human papillomavirus L2 protein segments (S and P) were expressed in N. benthamiana and utilized to vaccinate mice against the L2 capsid protein (aa14-38x2 and aa14-122) of Human Papillomavirus 16 to study a potential boosting effect of the Recombinant Immune Complex vaccine platform upon prime-boost dosing with the virus-like particle being the prime and the Recombinant Immune Complex being the boost in this vaccine schema.
ContributorsHunter, Joseph G (Author) / Mason, Hugh (Thesis advisor) / Arizona State University (Publisher)
Created2023
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019
157947-Thumbnail Image.png
Description
Flaviviruses (FVs) are among the most medically important arboviruses of the world with the Dengue virus (DENV) accounting for a large percentage of infections observed in tropical and subtropical regions of the world. Globalization, travel, and the expanding range of mosquito vectors, such as Aedes aegypti, have increased the potential

Flaviviruses (FVs) are among the most medically important arboviruses of the world with the Dengue virus (DENV) accounting for a large percentage of infections observed in tropical and subtropical regions of the world. Globalization, travel, and the expanding range of mosquito vectors, such as Aedes aegypti, have increased the potential of infection rates and illnesses associated with FVs.

The DENV and the Zika (ZIKV) FVs frequently co-circulate and generally cause mild self-liming febrile illnesses. However, a secondary infection with a heterologous DENV serotype may lead to life threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DHF/DSS have been linked to antibody dependent enhancement of infection (ADE), a phenomenon that occurs when antibodies (Abs) formed against an initial infection with one serotype of DENV cross-reacts but does not neutralize a heterologous DENV serotype in a secondary infection. Furthermore, Abs raised against the ZIKV have been observed to cross-react with the DENV and vice versa, which can potentially cause ADE and lead to severe DENV disease. The ZIKV can be transmitted vertically and has been linked to devastating congenital defects such as microcephaly in newborns. FDA approved treatments do not exist for DENV and ZIKV illnesses. Thus, there is a need for safe and effective treatments for these co-circulating viruses. Here, a tetravalent bispecific antibody (bsAb) targeting the ZIKV and all four serotypes of the DENV was expressed in the Nicotiana benthamiana (N. benthamiana) plant. Functional assays of the DENV/ZIKV bsAb demonstrated binding, neutralization, and a significant reduction in ADE activity against both the DENV and the ZIKV.

A single chain variable fragment (scFv) and a diabody based on an antibody directed against the immune checkpoint inhibitor PD-L1, were also expressed in N. benthamiana leaves. The smaller sizes of the scFv and diabody confers them with the ability to penetrate deeper tissues making them beneficial in diagnostics, imaging, and possibly cancer therapy. The past few decades has seen long strives in recombinant protein production in plants with significant improvements in production, safety, and efficacy. These characteristics make plants an attractive platform for the production of recombinant proteins, biologics, and therapeutics.
ContributorsEsqueda, Adrian (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Lake, Douglas (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2019