Matching Items (15)
Filtering by

Clear all filters

152380-Thumbnail Image.png
Description
ABSTRACT In terms of prevalence, human suffering and costs dengue infections are the most important arthropod-borne viral disease worldwide. Dengue virus (DENV) is a mosquito-borne flavivirus and the etiological agent of dengue fever and dengue hemorrhagic fever. Thus, development of a safe and efficient vaccine constitutes an urgent necessity. Besides

ABSTRACT In terms of prevalence, human suffering and costs dengue infections are the most important arthropod-borne viral disease worldwide. Dengue virus (DENV) is a mosquito-borne flavivirus and the etiological agent of dengue fever and dengue hemorrhagic fever. Thus, development of a safe and efficient vaccine constitutes an urgent necessity. Besides the traditional strategies aim at generating immunization options, the usage of viral vectors to deliver antigenic stimulus in order to elicit protection are particularly attractive for the endeavor of a dengue vaccine. The viral vector (MVvac2) is genetically equivalent to the currently used measles vaccine strain Moraten, which adds practicality to my approach. The goal of the present study was to generate a recombinant measles virus expressing structural antigens from two strains of DENV (DENV2 and DENV4) The recombinant vectors replication profile was comparable to that of the parental strain and expresses either membrane bound or soluble forms of DENV2 and DENV4 E glycoproteins. I discuss future experiments in order to demonstrate its immunogenicity in our measles-susceptible mouse model.
ContributorsAbdelgalel, Rowida (Author) / Reyes del Valle, Jorge (Thesis advisor) / Hogue, Brenda (Committee member) / Frasch, Wayne D (Committee member) / Arizona State University (Publisher)
Created2013
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
153827-Thumbnail Image.png
Description
Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and

Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and independently folding domain III (DIII) contains epitopes that elicit highly specific neutralizing antibodies. The hepatitis B small surface antigen (HBsAg, S) was used as a scaffold to display DENV 2 DIII on a virus-like particle (VLP). A measles virus (MV) was engineered to vector HBsAg and the hybrid glycoprotein DIII-HBsAg in two different loci (DIII-S). Despite the relatively deleterious effect on replication caused by the insertion of two transcription cassettes, the recombinant virus MVvac2(DIII-S,S)P induced the secretion of DIII-S hybrid VLP with a similar sucrose density as HBsAg particles (1.10-1.12g/ml) and peaked at 48 h post-infection producing 1.3x106 TCID50/ml infectious MV units in vitro. A second recombinant virus, MVvac2(DIII-S)N, was engineered to vector only the hybrid DIII-S. However, it did not induce the secretion of hybrid HBsAg particles in the supernatant of infected cells. The immunogenicity of the recombinant viruses was tested in a MV-susceptible small animal model, the experimental group which received two 105 TCID50 I.P. doses of MVvac2(DIII-S,S)P in a 28 day interval developed a robust immune response against MV (1:1280), HBsAg (787 mIU/ml) and DENV2 (Log10 neutralization index of 1.2) on average. In summary, it is possible to display DENV E DIII on hybrid HBsAg particles vectored by MV that elicit an immune response. This forms the basis for a potential vaccine platform against DENV.
ContributorsHarahap, Indira (Author) / Reyes del Valle, Jorge (Thesis advisor) / Hogue, Brenda G (Thesis advisor) / Lake, Douglas (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2015
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019
158395-Thumbnail Image.png
Description
Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV)

Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV) has a large genome, contains many immune evasion genes and has been thoroughly studied, making it a popular candidate for an oncolytic platform. VACV mutants with deletions in the E3 immune evasion protein have been shown to have oncolytic efficacy but the mechanism of tumor selectivity has not been fully elucidated. These mutants have been shown to be regulated by the necroptosis pathway, a pathway that has been shown to be deficient in certain cancers. Using a pan-cancer screening method that combines dye exclusion assays, western blot analysis, and viral growth curve, the role of necroptosis in regulating VACV replication and oncolytic efficacy in cancer was further characterized. Results demonstrate a preliminary correlation between necroptosis, viral replication, and oncolytic efficacy. This correlation is clearest in breast cancer and melanomas yet may apply to other cancer subgroups. This data was also used to guide the development of a receptor-interacting protein kinase 3 (RIP3) matched pair mouse model in the E0771 mouse breast cancer line which can be used to further study the role of necroptosis and oncolytic efficacy in vivo. Understanding the contribution necroptosis plays in oncolytic efficacy can guide to design enhance the design of clinical trials to test VACV E3L mutants and may lead to better efficacy in humans and an improvement in clinical oncology.
ContributorsKasimsetty, Aradhana (Author) / Jacobs, Bertram L (Thesis advisor) / McFadden, Douglas G (Committee member) / Borad, Mitesh (Committee member) / Arizona State University (Publisher)
Created2020
158412-Thumbnail Image.png
Description
Novel biological strategies for cancer therapy have recently been able to generate improved anti-tumor effects in the clinic. Of these new advancements, oncolytic virotherapy is a promising strategy through a dual mechanism of oncolysis and stimulation of tumor immunogenicity against the target cancer cells. Myxoma virus (MYXV) is an oncolytic

Novel biological strategies for cancer therapy have recently been able to generate improved anti-tumor effects in the clinic. Of these new advancements, oncolytic virotherapy is a promising strategy through a dual mechanism of oncolysis and stimulation of tumor immunogenicity against the target cancer cells. Myxoma virus (MYXV) is an oncolytic poxvirus that has a natural tropism for Leporids, being nonpathogenic in humans and all other known vertebrates. MYXV is able to infect cancer cells due to mutations and defects in many innate signaling pathways, such as those involved in anti-viral responses. While MYXV alone infects and kills many classes of human cancer cells, recombinant techniques allow for the implementation of therapeutic transgenes, which have the potential of ‘arming’ the virus to enhance its potential as an oncolytic virus. The implementation of certain transgenes allows improved cancer cell killing and/or promotion of more robust anti-tumor immune responses. To investigate the potential of immune-inducing transgenes in MYXV, in vitro screening experiments were performed with several single transgene-armed recombinant MYXVs. As recent studies have shown the ability of MYXV to uniquely target malignant human hematopoietic stem cells, the potential of oncolytic MYXV armed with individual immune-enhancing transgenes was investigated through in vitro killing analysis using human acute myeloid leukemia (AML) and multiple myeloma (MM) cell lines. Additionally, in vitro experiments were performed using primary bone marrow (BM) cells obtained from human patients diagnosed with MM. Furthermore, the action of an engineered bispecific killer engager (huBIKE) was investigated through co-culture studies between the CD138 surface marker of target MM cells and the CD16 surface marker of primary effector peripheral blood mononuclear cells (PBMCs), particularly NK cells and neutrophils. In this study, several of the test armed MYXV-infected human AML and MM cell lines resulted in increased cell death compared to unarmed MYXV-infected cells. Additionally, increased killing of CD138+ MM cells from primary human BM samples was observed following infection with huBIKE-armed MYXV relative to infection with unarmed MYXV. Furthermore, analysis of co-culture studies performed suggests enhanced killing of target MM cells via engagement of NK cells with U266 MM cells by huBIKE.
ContributorsMamola, Joseph (Author) / McFadden, Grant (Thesis advisor) / Jacobs, Bertram (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2020
157749-Thumbnail Image.png
Description
Recent studies have shown that human papillomavirus (HPV) plays a role in development of cancers, one of which is head and neck cancer. There is strong and consistent molecular evidence demonstrating that human papillomavirus (HPV) is an etiological cause of these oropharyngeal cancers. Despite the introduction of HPV vaccines, there

Recent studies have shown that human papillomavirus (HPV) plays a role in development of cancers, one of which is head and neck cancer. There is strong and consistent molecular evidence demonstrating that human papillomavirus (HPV) is an etiological cause of these oropharyngeal cancers. Despite the introduction of HPV vaccines, there is still an increase in human papillomavirus associated OPC (HPVOPC) and it is expected that the incidence of head and neck cancer, specifically oropharyngeal cancer (OPC) will increase. The aim of this study is to utilize human papillomavirus (HPV) seropositivity for rapid detection of HPV early specific antigen-antibodies using a lateral flow assay.

Human papillomavirus (HPV) 16 proteins of interest, E7, E6 and CE2 were expressed and purified in E. coli for detection of specific antibodies using lateral flow assay because viral and host factors impact the serologic responses to HPV early antigens in HPV-positive oropharyngeal cancer. 17 samples and 5 controls with already known antibody reactivity from ELISA analysis were selected for HPV serologic responses. The lateral flow strip was evaluated for its color band intensity using Image J software. Peak area was used to quantify the color intensity of the lateral flow strip. Out of the 17 samples, 11 (64.7%) showed high antibody levels to E7, 12 (70.6%) showed high Ab levels to E6 and 6 (35.3%) showed high Ab levels to CE2. Correlation coefficient between antibody detection by sight and ELISA for E7, CE2 and E6 were 0.6614, 0.4845 and 0.2372 respectively and correlation coefficient between lateral flow assay and ELISA for E7, CE2 and E6 were 0.3480, 0.1716 and 0.1644 respectively. This further proves patients or samples with HPV 16 oropharyngeal cancer have detectable antibodies to early E7, E6 and E2 proteins, which are potential biomarkers for HPV-associated oropharyngeal cancer.
ContributorsLadipo, Evelyn (Author) / Anderson, Karen S (Thesis advisor) / Hogue, Brenda G (Committee member) / Hou, Ching-Wen (Committee member) / Arizona State University (Publisher)
Created2019
161521-Thumbnail Image.png
Description
Viruses infect organisms in all domains of life and are abundant entities in ecosystems. In particular, single-stranded DNA viruses have been found in a wide variety of hosts and ecosystems. Using a metagenomic approach, novel circular viruses have been identified in multiple environmental samples. This thesis focuses on viruses and

Viruses infect organisms in all domains of life and are abundant entities in ecosystems. In particular, single-stranded DNA viruses have been found in a wide variety of hosts and ecosystems. Using a metagenomic approach, novel circular viruses have been identified in multiple environmental samples. This thesis focuses on viruses and virus dynamics from avian sources. As part of this thesis, a novel phapecoctavirus was identified in a pigeon cloacal swab. The phapecoctavirus is most closely related to Klebsiella phage ZCKP1, identified from a freshwater sample. Beyond this, this thesis addresses circoviruses, which are of interest due to disease they cause to avian species. Evolution of circovirus recombination was studied in a closed system of uninfected and infected pigeons. 178 genomes of pigeon circovirus were sequenced, and patterns of recombination determined. Seven genotypes were present in the population and genotype 4 was shown to be present in a majority of samples after the experiment was finished. Circoviruses were also identified in waterfowl feces and the ten genomes recovered represent two new circovirus species. Overall, the research described in this thesis helped to gain a deeper understanding of the diversity and evolution of circular DNA viruses associated with avian species.
ContributorsKhalifeh, Anthony (Author) / Varsani, Arvind (Thesis advisor) / Kraberger, Simona J (Committee member) / Dolby, Greer (Committee member) / Arizona State University (Publisher)
Created2021