Matching Items (888)
Filtering by

Clear all filters

152204-Thumbnail Image.png
Description
This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series

This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series of seven thematic hooks. These patterns, rhythms, and gestures are described, analyzed, and presented as examples of how each is used in the solos. The hooks are also set as application exercises for learning jazz style and improvisation. These exercises demonstrate how to use Martin's hooks as a means for furthering one's own improvisation. A full method for successful transcription is also presented, along with the printed transcriptions and their accompanying information sheets.
ContributorsWilkinson, Michael Scott (Author) / Ericson, John (Thesis advisor) / Kocour, Michael (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
151641-Thumbnail Image.png
Description
Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector

Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector has been reevaluated. To evaluate the safety and efficacy of VACV, we study the interactions between VACV and the host innate immune system, especially the type I interferon (IFN) signaling pathways. In this work, we evaluated the role of protein kinase R (PKR) and Adenosine Deaminase Acting on RNA 1(ADAR1), which are induced by IFN, in VACV infection. We found that PKR is necessary but is not sufficient to activate interferon regulatory factor 3 (IRF3) in the induction of type I IFN; and the activation of the stress-activated protein kinase/ c-Jun NH2-terminal kinase is required for the PKR-dependent activation of IRF3 during VACV infection. Even though PKR was found to have an antiviral effect in VACV, ADAR1 was found to have a pro-viral effect by destabilizing double stranded RNA (dsRNA), rescuing VACVΔE3L, VACV deleted of the virulence factor E3L, when provided in trans. With the lessons we learned from VACV and host cells interaction, we have developed and evaluated a safe replication-competent VACV vaccine vector for HIV. Our preliminary results indicate that our VACV vaccine vector can still induce the IFN pathway while maintaining the ability to replicate and to express the HIV antigen efficiently. This suggests that this VACV vector can be used as a safe and efficient vaccine vector for HIV.
ContributorsHuynh, Trung Phuoc (Author) / Jacobs, Bertram L (Thesis advisor) / Hogue, Brenda (Committee member) / Chang, Yung (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2013
151665-Thumbnail Image.png
Description
Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz

Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz players and teachers, private studio instructors, current university students majoring in jazz, and university and college jazz faculty, I developed a composite sketch of a secondary school student learning to play jazz. Using arts-based educational research methods, including the use of narrative inquiry and literary non-fiction, the status of current jazz education and the experiences by novice jazz learners is explored. What emerges is a complex story of students and teachers negotiating the landscape of jazz in and out of early twenty-first century public schools. Suggestions for enhancing jazz experiences for all stakeholders follow, focusing on access and the preparation of future jazz teachers.
ContributorsKelly, Keith B (Author) / Stauffer, Sandra (Thesis advisor) / Tobias, Evan (Committee member) / Kocour, Michael (Committee member) / Sullivan, Jill (Committee member) / Schmidt, Margaret (Committee member) / Arizona State University (Publisher)
Created2013
152290-Thumbnail Image.png
Description
Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2

Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2 hrn., 2 tpt., tbn., pno., perc., str. (6,4,2,2,1). The work is approximately 27 minutes in duration. The first movement of the Concerto is written in a fluid sonata form. A fugato begins where the second theme would normally appear, and the second theme does not fully appear until near the end of the solo piano section. The result is that the second theme when finally revealed is so reminiscent of the history of jazz and classical synthesis that it does not sound completely new, and in fact is a return of something that was heard before, but only hinted at in this piece. The second movement is a kind of deconstructive set of variations, with a specific theme and harmonic pattern implied throughout the movement. However, the full theme is not disclosed until the final variation. The variations are interrupted by moments of pure rhythmic music, containing harmony made up of major chords with an added fourth, defying resolution, and dissolving each time back into a new variation. The third movement is in rondo form, using rhythmic and harmonic influences from jazz. The percussion plays a substantial role in this movement, acting as a counterpoint to the piano part throughout. This movement and the piece concludes with an extended coda, inspired indirectly by the simple complexities of an improvisational piano solo, building in complexity as the concerto draws to a close.
ContributorsSneider, Elliot (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Hackbarth, Glenn (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
152380-Thumbnail Image.png
Description
ABSTRACT In terms of prevalence, human suffering and costs dengue infections are the most important arthropod-borne viral disease worldwide. Dengue virus (DENV) is a mosquito-borne flavivirus and the etiological agent of dengue fever and dengue hemorrhagic fever. Thus, development of a safe and efficient vaccine constitutes an urgent necessity. Besides

ABSTRACT In terms of prevalence, human suffering and costs dengue infections are the most important arthropod-borne viral disease worldwide. Dengue virus (DENV) is a mosquito-borne flavivirus and the etiological agent of dengue fever and dengue hemorrhagic fever. Thus, development of a safe and efficient vaccine constitutes an urgent necessity. Besides the traditional strategies aim at generating immunization options, the usage of viral vectors to deliver antigenic stimulus in order to elicit protection are particularly attractive for the endeavor of a dengue vaccine. The viral vector (MVvac2) is genetically equivalent to the currently used measles vaccine strain Moraten, which adds practicality to my approach. The goal of the present study was to generate a recombinant measles virus expressing structural antigens from two strains of DENV (DENV2 and DENV4) The recombinant vectors replication profile was comparable to that of the parental strain and expresses either membrane bound or soluble forms of DENV2 and DENV4 E glycoproteins. I discuss future experiments in order to demonstrate its immunogenicity in our measles-susceptible mouse model.
ContributorsAbdelgalel, Rowida (Author) / Reyes del Valle, Jorge (Thesis advisor) / Hogue, Brenda (Committee member) / Frasch, Wayne D (Committee member) / Arizona State University (Publisher)
Created2013
153408-Thumbnail Image.png
Description
Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability

Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability to self-renew and rapidly proliferate into effector cells during secondary infections. However during persistent viral infection, T cell differentiation is disrupted due to sustained antigen stimulation resulting in a loss of T cell effector function. Despite the development of vaccines for a wide range of viral diseases, efficacious vaccines for persistent viral infections have been challenging to design. Immunization against virus T cell epitopes has been proposed as an alternative vaccination strategy for persistent viral infections, such as HIV. However, vaccines that selectively engage T cell responses can result in inappropriate immune responses that increase, rather than prevent, disease. Quantitative models of virus infection and immune response were used to investigate how virus and immune system variables influence pathogenic versus protective T cell responses generated during persistent viral infection. It was determined that an intermediate precursor frequency of virus-specific memory CD8 T cells prior to LCMV infection resulted in maximum T cell mediated pathology. Increased pathology was independent of antigen sensitivity or the diversity of TCR in the CD8 T cell response, but was dependent on CD8 T cell production of TNF and the magnitude of initial virus exposure. The threshold for exhaustion of responding CD8 T cells ultimately influences the precursor frequency that causes enhanced disease.In addition, viral infection can occur in the context of co-infection by heterologous pathogens that modulate immune responses and/or disease. Co-infection of two unrelated viruses in their natural host, Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV) infection in mice, were studied. ECTV infection can be a lethal infection in mice due in part to the blockade of antiviral cytokines, including Type I Interferons (IFN-I). It was determined that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, presumably due to IFN-I induction by LCMV. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and biased toward effector-memory cell generation. Thus, providing evidence for bi-directional effects of viral co-infection that modulate disease and immunity. Together the results suggest heterogeneity in T cell responses during vaccination with viral vectors may be in part due to heterologous virus infection or vaccine usage and that TNF-blockade may be useful for minimizing pathology while maintaining protection during virus infection. Lastly, quantitative mathematical models of virus and T cell immunity can be useful to generate predictions regarding which molecular and cellular pathways mediate T cell protection versus pathology.
ContributorsMcAfee, Megan (Author) / Blattman, Joseph N (Thesis advisor) / Anderson, Karen (Committee member) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2015
153284-Thumbnail Image.png
Description
This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did,

This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did, what experiences they said they learned from, and how their out-of-school engagements related to their in-school curriculum. Research on jazz education, informal learning practices in music, and the in-school and out-of-school experiences of students informed this study. Data were generated through observation, interviews, video blogs (vlogs), and SMS text messages.

Analysis of data revealed that participants engaged with music when outside of school by practicing, teaching, gigging, recording, playing music with others, attending live musical performances, socializing with other musicians, listening, and engaging with non-jazz musical styles (aside from listening). They engaged with music because of: 1) the love of music, 2) the desire for musical excellence, 3) financial considerations, 4) the aspiration to affect others positively with music, and 5) the connection with other musicians. Participants indicated that they learned by practicing, listening to recordings, attending live performances, playing paid engagements, socializing, teaching, and reading. In-school and out-of-school experience and learning had substantial but not complete overlap.

The study implies that a balance between in-school and out-of-school musical experience may help undergraduate jazz studies students to maximize their overall musical learning. It also suggests that at least some jazz studies majors are fluent in a wide variety of music learning practices that make them versatile, flexible, and employable musicians. Further implications are provided for undergraduate jazz students as well as collegiate jazz educators, the music education profession, and schools of music. Additional implications concern future research and the characterization of jazz study in academia.
ContributorsLibman, Jeffrey B (Author) / Tobias, Evan (Thesis advisor) / Kocour, Michael (Committee member) / Schmidt, Margaret (Committee member) / Solis, Theodore (Committee member) / Stauffer, Sandra (Committee member) / Arizona State University (Publisher)
Created2014
150387-Thumbnail Image.png
Description
The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need to understand vaccination from vaccine design to prediction of vaccine efficacy using mathematical models. Post-exposure vaccination with VACV has been suggested to be effective if administered within four days of smallpox exposure although this has not been definitively studied in humans. The first and second chapters analyze post-exposure prophylaxis of VACV in an animal model using v50ΔB13RMγ, a recombinant VACV expressing murine interferon gamma (IFN-γ) also known as type II IFN. While untreated animals infected with wild type VACV die by 10 days post-infection (dpi), animals treated with v50ΔB13RMγ 1 dpi had decreased morbidity and 100% survival. Despite these differences, the viral load was similar in both groups suggesting that v50ΔB13RMγ acts as an immunoregulator rather than as an antiviral. One of the main characteristics of VACV is its resistance to type I IFN, an effect primarily mediated by the E3L protein, which has a Z-DNA binding domain and a double-stranded RNA (dsRNA) binding domain. In the third chapter a VACV that independently expresses both domains of E3L was engineered and compared to wild type in cells in culture. The dual expression virus was unable to replicate in the JC murine cell line where both domains are needed together for replication. Moreover, phosphorylation of the dsRNA dependent protein kinase (PKR) was observed at late times post-infection which indicates that both domains need to be linked together in order to block the IFN response. Because smallpox has already been eradicated, the utility of mathematical modeling as a tool for predicting disease spread and vaccine efficacy was explored in the last chapter using dengue as a disease model. Current modeling approaches were reviewed and the 2000-2001 dengue outbreak in a Peruvian region was analyzed. This last section highlights the importance of interdisciplinary collaboration and how it benefits research on infectious diseases.
ContributorsHolechek, Susan A (Author) / Jacobs, Bertram L (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Frasch, Wayne (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
150394-Thumbnail Image.png
Description
Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising

Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a structural protein configuring the enveloped virus particles, and has been suggested to constitute a target of the cellular immunity potentially controlling the viral load. It was hypothesized that HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. Plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a tobacco mosaic virus-based expression system or a combination of both. Results of biophysical, biochemical and electron microscopy characterization demonstrated that plant cells could support not only the formation of HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These particles were purified and utilized in mice immunization experiments. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR - a fusion of MPER and the B-subunit of cholera toxin) were administered to BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens could be elicited in mice systemically primed with VLPs and these responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a robust boosting response against Gag and gp41 when boosted with either candidate. Functional assays of these antibodies are in progress to test the antibodies' effectiveness in neutralizing and preventing mucosal transmission of HIV-1. This immunogenicity of plant-based Gag/dgp41 VLPs represents an important milestone on the road towards a broadly-efficacious and inexpensive subunit vaccine against HIV-1.
ContributorsKessans, Sarah (Author) / Mor, Tsafrir S (Thesis advisor) / Matoba, Nobuyuki (Committee member) / Mason, Hugh (Committee member) / Hogue, Brenda (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
Description
The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute

The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute master Al Grey have been overlooked. This document fills that void, combining historical context with thirteen transcriptions of Grey's trombone features and improvisations. Selection of transcribed materials was based on an examination of historically significant solos in Al Grey's fifty-five-year career. The results are a series of open-horn and plunger solos that showcase Grey's sound, technical brilliance, and wide range of dynamics and articulation. This collection includes performances from a mix of widely available and obscure recordings, the majority coming from engagements with the Count Basie Orchestra. Methods learned from the study of Al Grey's book Plunger Techniques were vital in the realization of his work. The digital transcription software Amazing Slow Downer by Roni Music aided in deciphering some of Grey's more complicated passages and, with octave displacement, helped bring previously inaudible moments to the foreground.
ContributorsHopkins, Charles E (Author) / Pilafian, Sam (Thesis advisor) / Stauffer, Sandra (Committee member) / Solís, Ted (Committee member) / Ericson, John (Committee member) / Kocour, Michael (Committee member) / Arizona State University (Publisher)
Created2011