Matching Items (1)
Filtering by

Clear all filters

131228-Thumbnail Image.png
Description
Damage to DNA can affect the genes it encodes; if this damage is not repaired, abnormal proteins may be produced and cellular functions may be disturbed. DNA damage has been implicated in the initiation and progression of a variety of diseases. Conversely, DNA damage has also been discovered to contribute

Damage to DNA can affect the genes it encodes; if this damage is not repaired, abnormal proteins may be produced and cellular functions may be disturbed. DNA damage has been implicated in the initiation and progression of a variety of diseases. Conversely, DNA damage has also been discovered to contribute to beneficial biological processes. Madabhushi and colleagues (2015) determined that activity-dependent DNA double strand breaks (DSBs) in the promoter region of immediate early genes (IEGs) induced their expression. EGR3 is an IEG transcription factor which regulates the expression of growth factors and synaptic plasticity-associated genes. In a previously conducted microarray experiment, it was revealed that EGR3 regulates the expression of genes associated with DNA repair such as Cenpa and Nr4a2. These findings inspired us to investigate if EGR3 affects DNA repair in vivo. Before conducting this experiment, we sought to standardize and optimize a method of inducing DNA damage in the hippocampus. Electroconvulsive stimulation (ECS) is utilized to induce neuronal activity. Since neuronal activity leads to the formation of DNA DSBs, we theorized that ECS could be used to induce DNA DSBs in the hippocampus. We predicted that mice that receive ECS would have more DNA DSBs than those that receive the sham treatment. Gamma H2AX, a biomarker for DNA damage, was utilized to quantify DNA DSBs. Gamma H2AX expression in the dentate gyrus, CA1 and CA3 regions of the hippocampus was compared between mice that received the sham treatment and mice that received ECS. Mice that received ECS were sacrificed either 1 or 2 hours post-administration, constituting treatment conditions of 1 hr post-ECS and 2 hrs post-ECS. Our results suggest that ECS has a statistically significant effect exclusively in the CA1 region of the hippocampus. However, our analyses may have been limited due to sample size. A power analysis was conducted, and the results suggest that a sample size of n=4 mice will be sufficient to detect significant differences across treatments in all three regions of the hippocampus. Ultimately, future studies with an increased sample size will need to be conducted to conclusively assess the use of ECS to induce DNA damage within the hippocampus.
ContributorsAden, Aisha Abubakar (Author) / Newbern, Jason (Thesis director) / Gallitano, Amelia (Thesis director) / Marballi, Ketan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05