Matching Items (7)
Filtering by

Clear all filters

136182-Thumbnail Image.png
Description
The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic

The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic code. They aim to solve these genetic mysteries using whole exome sequencing, a method that prioritizes the protein-coding portion of the genome in the search for disease-causing variants. Unfortunately, a communication gap sometimes exists between the TGen scientists and the patients they serve. I have seen, first hand, the kind of confusion that this study elicits in the families of its participants. Therefore, for my thesis, I decided to create a booklet that is meant to provide some clarity as to what exactly The Dorrance Center for Rare Childhood Disorders does to help diagnose children with rare disorders. The purpose of the booklet is to dispel any confusion regarding the study by providing a general review of genetics and an application of these lessons to the relevant sequencing technology as well as a discussion of the causes and effects of genetic mutations that often times are linked to rare childhood disorders.
ContributorsCambron, Julia Claire (Author) / LaBelle, Jeffrey (Thesis director) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137271-Thumbnail Image.png
Description
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating illness that causes the degeneration of both upper and lower motor neurons, leading to eventual muscle atrophy. ALS rapidly progresses into paralysis, with patients typically dying due to respiratory complications within three to five years from the

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating illness that causes the degeneration of both upper and lower motor neurons, leading to eventual muscle atrophy. ALS rapidly progresses into paralysis, with patients typically dying due to respiratory complications within three to five years from the onset of their symptoms. Even after many years of research and drug trials, there is still no cure, and current therapies only succeed in increasing life-span by approximately three months. With such limited options available for patients, there is a pressing need to not only find a cure, but also make new treatments available in order to ameliorate disease symptoms. In a genome-wide association study previously conducted by the Translational Genomics Research Institute (TGen), several single-nucleotide polymorphisms (SNPs) upstream of a novel gene, FLJ10968, were found to significantly alter risk for ALS. This novel gene acquired the name FGGY after publication of the paper. FGGY exhibits altered levels of protein expression throughout ALS disease progression in human subjects, and detectable protein and mRNA expression changes in a mouse model of ALS. We performed co-immunoprecipitation experiments coupled with mass spectrometry in order to determine which proteins are associated with FGGY. Some of these potential binding partners have been linked to RNA regulation, including regulators of the splicesomal complex such as SMN, Gemin, and hnRNP C. To further validate these findings, we have verified co-localization of these proteins with one another. We hypothesize that FGGY plays an important role in ALS pathogenesis, and we will continue to examine its biological function.
ContributorsTerzic, Barbara (Author) / Jensen, Kendall (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137039-Thumbnail Image.png
Description
Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address

Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address the lack of knowledge with supplemental educational materials to be partnered with an engineering capstone project that provides a low cost diagnostic test.
ContributorsShawver, Jamie Christine (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136966-Thumbnail Image.png
Description
The purpose of this thesis is to examine the current atmosphere of genetic patent law and use economic theory to construct models which describe the consequences of the legal code. I intend to analyze the four specific cases of Diamond v. Chakrabarty, Association for Molecular Pathology v. Myriad Genetics, the

The purpose of this thesis is to examine the current atmosphere of genetic patent law and use economic theory to construct models which describe the consequences of the legal code. I intend to analyze the four specific cases of Diamond v. Chakrabarty, Association for Molecular Pathology v. Myriad Genetics, the Alzheimer's Institute of America v. Jackson Laboratory, and the harm caused by PGx Health's monopoly over the LQTS gene.
ContributorsVolz, Caleb Richard (Author) / DeSerpa, Allan (Thesis director) / Silverman, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
135041-Thumbnail Image.png
Description
The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied

The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied in more creative ways, and are being used to improve upon traditional computation methods through distributed computing. Statistical analysis of expression quantitative trait loci (eQTL) data has classically been performed using the open source tool PLINK - which runs on high performance computing (HPC) systems. However, progress has been made in running the statistical analysis in the ecosystem of the big data framework Hadoop, resulting in decreased run time, reduced storage footprint, reduced job micromanagement and increased data accessibility. Now that the data can be more readily manipulated, analyzed and accessed, there are opportunities to use the modularity and power of Hadoop to further process the data. This project focuses on adding a component to the data pipeline that will perform graph analysis on the data. This will provide more insight into the relation between various genetic differences in individuals with breast cancer, and the resulting variation - if any - in gene expression. Further, the investigation will look to see if there is anything to be garnered from a perspective shift; applying tools used in classical networking contexts (such as the Internet) to genetically derived networks.
ContributorsRandall, Jacob Christopher (Author) / Buetow, Kenneth (Thesis director) / Meuth, Ryan (Committee member) / Almalih, Sara (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
166220-Thumbnail Image.png
Description

The study of macaque monkeys harbors advancements in the field of biomedical research. It is imperative to understand the genetic composition of different species of macaques to assess their accuracy as non-human primate (NHP) models for disease detection and treatment assessments. We sought to characterize the hybridization and admixture of

The study of macaque monkeys harbors advancements in the field of biomedical research. It is imperative to understand the genetic composition of different species of macaques to assess their accuracy as non-human primate (NHP) models for disease detection and treatment assessments. We sought to characterize the hybridization and admixture of the Southeast Asian macaques using single nucleotide polymorphism markers and analyzing the populations on the mainland and the island. Using AMOVA tests and STRUCTURE analysis, we determined that there are three distinct populations: Macaca mulatta, M. fascicularis fascicularis, and M. f. aurea. Furthermore, the island species holds an isolated population of M. f. aurea that demonstrate high inbreeding and genetic uniqueness compared to the mainland species. Findings from this study confirm that NHP models may need to be modified or updated according to changing allelic frequencies and genetic drift.

ContributorsFalak, Asiya (Author) / Kanthaswamy, Sreetharan (Thesis director) / Oldt, Robert (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165912-Thumbnail Image.png
Description
The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to create and launch a new business. Initially, our team focused

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to create and launch a new business. Initially, our team focused on creating a product that would provide those who have received basic genetic testing from services such as 23andMe with nutrition, exercise, and health/wellness educational resources. Over time, we transitioned our focus to creating a community forum that would also provide those resources to people who had not received basic genetic testing, but were still interested in accessing educational resources about the specific conditions that basic genetic testing services provide reports for. To accomplish this, we have produced a website that allows users to post content and interact with each other.
ContributorsUmana Fleck, David (Author) / Chapman, Isabella (Co-author) / Niu, Hardy (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05