Matching Items (5)
Filtering by

Clear all filters

152801-Thumbnail Image.png
Description
Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults

Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults participated in the study that measured intelligibility (percent words correct) of dysarthric speech in auditory versus audiovisual conditions. Participants were then separated into two groups: older adults (age range 47 to 68) and young adults (age range 19 to 36) to examine the influence of age. Findings revealed that all participants, regardless of age, improved their ability to recognize dysarthric speech when visual speech was added to the auditory signal. The magnitude of this benefit, however, was greater for older adults when compared with younger adults. These results inform our understanding of how visual speech information influences understanding of dysarthric speech.
ContributorsFall, Elizabeth (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Gray, Shelley (Committee member) / Arizona State University (Publisher)
Created2014
150607-Thumbnail Image.png
Description
Often termed the "gold standard" in the differential diagnosis of dysarthria, the etiology-based Mayo Clinic classification approach has been used nearly exclusively by clinicians since the early 1970s. However, the current descriptive method results in a distinct overlap of perceptual features across various etiologies, thus limiting the clinical utility of

Often termed the "gold standard" in the differential diagnosis of dysarthria, the etiology-based Mayo Clinic classification approach has been used nearly exclusively by clinicians since the early 1970s. However, the current descriptive method results in a distinct overlap of perceptual features across various etiologies, thus limiting the clinical utility of such a system for differential diagnosis. Acoustic analysis may provide a more objective measure for improvement in overall reliability (Guerra & Lovely, 2003) of classification. The following paper investigates the potential use of a taxonomical approach to dysarthria. The purpose of this study was to identify a set of acoustic correlates of perceptual dimensions used to group similarly sounding speakers with dysarthria, irrespective of disease etiology. The present study utilized a free classification auditory perceptual task in order to identify a set of salient speech characteristics displayed by speakers with varying dysarthria types and perceived by listeners, which was then analyzed using multidimensional scaling (MDS), correlation analysis, and cluster analysis. In addition, discriminant function analysis (DFA) was conducted to establish the feasibility of using the dimensions underlying perceptual similarity in dysarthria to classify speakers into both listener-derived clusters and etiology-based categories. The following hypothesis was identified: Because of the presumed predictive link between the acoustic correlates and listener-derived clusters, the DFA classification results should resemble the perceptual clusters more closely than the etiology-based (Mayo System) classifications. Results of the present investigation's MDS revealed three dimensions, which were significantly correlated with 1) metrics capturing rate and rhythm, 2) intelligibility, and 3) all of the long-term average spectrum metrics in the 8000 Hz band, which has been linked to degree of phonemic distinctiveness (Utianski et al., February 2012). A qualitative examination of listener notes supported the MDS and correlation results, with listeners overwhelmingly making reference to speaking rate/rhythm, intelligibility, and articulatory precision while participating in the free classification task. Additionally, acoustic correlates revealed by the MDS and subjected to DFA indeed predicted listener group classification. These results beget acoustic measurement as representative of listener perception, and represent the first phase in supporting the use of a perceptually relevant taxonomy of dysarthria.
ContributorsNorton, Rebecca (Author) / Liss, Julie (Thesis advisor) / Azuma, Tamiko (Committee member) / Ingram, David (Committee member) / Arizona State University (Publisher)
Created2012
150496-Thumbnail Image.png
Description
Distorted vowel production is a hallmark characteristic of dysarthric speech, irrespective of the underlying neurological condition or dysarthria diagnosis. A variety of acoustic metrics have been used to study the nature of vowel production deficits in dysarthria; however, not all demonstrate sensitivity to the exhibited deficits. Less attention has been

Distorted vowel production is a hallmark characteristic of dysarthric speech, irrespective of the underlying neurological condition or dysarthria diagnosis. A variety of acoustic metrics have been used to study the nature of vowel production deficits in dysarthria; however, not all demonstrate sensitivity to the exhibited deficits. Less attention has been paid to quantifying the vowel production deficits associated with the specific dysarthrias. Attempts to characterize the relationship between naturally degraded vowel production in dysarthria with overall intelligibility have met with mixed results, leading some to question the nature of this relationship. It has been suggested that aberrant vowel acoustics may be an index of overall severity of the impairment and not an "integral component" of the intelligibility deficit. A limitation of previous work detailing perceptual consequences of disordered vowel acoustics is that overall intelligibility, not vowel identification accuracy, has been the perceptual measure of interest. A series of three experiments were conducted to address the problems outlined herein. The goals of the first experiment were to identify subsets of vowel metrics that reliably distinguish speakers with dysarthria from non-disordered speakers and differentiate the dysarthria subtypes. Vowel metrics that capture vowel centralization and reduced spectral distinctiveness among vowels differentiated dysarthric from non-disordered speakers. Vowel metrics generally failed to differentiate speakers according to their dysarthria diagnosis. The second and third experiments were conducted to evaluate the relationship between degraded vowel acoustics and the resulting percept. In the second experiment, correlation and regression analyses revealed vowel metrics that capture vowel centralization and distinctiveness and movement of the second formant frequency were most predictive of vowel identification accuracy and overall intelligibility. The third experiment was conducted to evaluate the extent to which the nature of the acoustic degradation predicts the resulting percept. Results suggest distinctive vowel tokens are better identified and, likewise, better-identified tokens are more distinctive. Further, an above-chance level agreement between nature of vowel misclassification and misidentification errors was demonstrated for all vowels, suggesting degraded vowel acoustics are not merely an index of severity in dysarthria, but rather are an integral component of the resultant intelligibility disorder.
ContributorsLansford, Kaitlin L (Author) / Liss, Julie M (Thesis advisor) / Dorman, Michael F. (Committee member) / Azuma, Tamiko (Committee member) / Lotto, Andrew J (Committee member) / Arizona State University (Publisher)
Created2012
131951-Thumbnail Image.png
Description
Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven

Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven adult
subjects in both speaking (speech planning) and silent reading (no speech planning) conditions.
Data analysis was accomplished manually as well as via generation of a MATLAB code to
combine data sets and calculate auditory modulation (suppression). Results of the P200
modulation showed that modulation was larger for incongruent stimuli than congruent stimuli.
However, this was not the case for the N100 modulation. The data for pure tone could not be
analyzed because the intensity of this stimulus was substantially lower than that of the speech
stimuli. Overall, the results indicated that the P200 component plays a significant role in
processing stimuli and determining the relevance of stimuli; this result is consistent with role of
P200 component in high-level analysis of speech and perceptual processing. This experiment is
ongoing, and we hope to obtain data from more subjects to support the current findings.
ContributorsTaylor, Megan Kathleen (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131570-Thumbnail Image.png
Description
Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies

Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies (6Hz, 12Hz, and 22Hz), transcranial random noise stimulation (tRNS), and a no-stimulation sham condition. In all stimulation conditions, we recorded electroencephalographic data to investigate the link between different frequencies of tACS and their effects on brain oscillations. We recruited 12 healthy participants. Each participant completed 30 trials of the stimulation conditions. In a given trial, we recorded brain activity for 10 seconds, stimulated for 12 seconds, and recorded an additional 10 seconds of brain activity. The difference between the average oscillation power before and after a stimulation condition indicated change in oscillation amplitude due to the stimulation. Our results showed the stimulation conditions entrained brain activity of a sub-group of participants.
ContributorsChernicky, Jacob Garrett (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05