Matching Items (4)
Filtering by

Clear all filters

154494-Thumbnail Image.png
Description
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and

III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
ContributorsChen, Hong (Author) / Zhao, Yuji (Thesis advisor) / Yao, Yu (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154615-Thumbnail Image.png
Description
Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D

Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D OLED structures. With photonic crystal structures, a maximum of 30% extraction efficiency is achieved. A higher external quantum efficiency of 35% is derived after applying Fabry-Perot resonance cavity into OLEDs. Furthermore, different factors such as material properties, layer thicknesses and dipole polarizations and locations have been studied. Moreover, an upper limit for the light extraction efficiency of 80% is reached theoretically with perfect reflector and single dipole polarization and location. To elucidate the physical mechanism, transfer matrix method is introduced to calculate the spectral-hemispherical reflectance of the multilayer OLED structures. In addition, an attempt of using hyperbolic metamaterial in OLED has been made and resulted in 27% external quantum efficiency, due to the similar mechanism of wave interference as Fabry-Perot structure. The simulation and optimization methods and findings would facilitate the design of next generation, high-efficiency OLED devices.
ContributorsSu, Hang (Author) / Wang, Liping (Thesis advisor) / Li, Jian (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2016
168405-Thumbnail Image.png
Description
Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection

Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection and control. However, polarization measurement and manipulating devices with high efficiency and accuracy in the mid-infrared (MIR) range remain elusive. This dissertation presented design concepts and experimental demonstrations of full-Stokes parameters detection and polarization generation devices based on chip-integrated plasmonic metasurfaces with high performance and record efficiency. One of the significant challenges for full-Stokes polarization detection is to achieve high-performance circular polarization (CP) filters. The first design presented in this dissertation is based on the direct integration of plasmonic quarter-wave plate (QWP) onto gold nanowire gratings. It is featured with the subwavelength thickness (~500nm) and extinction ratio around 16. The second design is based on the anisotropic thin-film interference between two vertically integrated anisotropic plasmonic metasurfaces. It provides record high efficiency (around 90%) and extinction ratio (>180). These plasmonic CP filters can be used for circular, elliptical, and linear polarization generation at different wavelengths. The maximum degree of circular polarization (DOCP) measured from the sample achieves 0.99998. The proposed CP filters were integrated with nanograting-based linear polarization (LP) filters on the same chip for single-shot polarization detection. Full-Stokes measurements were experimentally demonstrated with high accuracy at the single wavelength using the direct subtraction method and over a broad wavelength range from 3.5 to 4.5mm using the Mueller matrix method. This design concept was later expanded to a pixelized array of polarization filters. A full-Stokes imaging system was experimentally demonstrated based on integrating a metasurface with pixelized polarization filters arrays and an MIR camera.
ContributorsBai, Jing (Author) / Yao, Yu (Thesis advisor) / Balanis, Constantine A. (Committee member) / Wang, Liping (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2021
158511-Thumbnail Image.png
Description
Photonic integrated circuit (PIC) in the visible spectrum opens up new opportunities for frequency metrology, neurophotonics, and quantum technologies. Group III nitride (III-N) compound semiconductor is a new emerging material platform for PIC in visible spectrum. The ultra-wide bandgap of aluminum nitride (AlN) allows broadband transparency. The high quantum efficiency

Photonic integrated circuit (PIC) in the visible spectrum opens up new opportunities for frequency metrology, neurophotonics, and quantum technologies. Group III nitride (III-N) compound semiconductor is a new emerging material platform for PIC in visible spectrum. The ultra-wide bandgap of aluminum nitride (AlN) allows broadband transparency. The high quantum efficiency of indium gallium nitride (InGaN) quantum well is the major enabler for solid-state lighting and provides the opportunities for active photonic integration. Additionally, the two-dimensional electron gas induced by spontaneous and polarization charges within III-N materials exhibit large electron mobility, which is promising for the development of high frequency transistors. Moreover, the noncentrosymmetric crystalline structure gives nonzero second order susceptibility, beneficial for the application of second harmonic generation and entangled photon generation in nonlinear and quantum optical technologies. Despite the promising features of III-N materials, the investigations on the III-N based PICs are still primitive, mainly due to the difficulties in material growth and the lack of knowledge on fundamental material parameters. In this work, firstly, the fundamental nonlinear optical properties of III-N materials will be characterized. Then, the fabrication process flow of III-N materials will be established. Thirdly, the waveguide performance will be theoretically and experimentally evaluated. At last, the supercontinuum generation from visible to infrared will be demonstrated by utilizing soliton dynamics in high order guided modes. The outcome from this work paves the way towards fully integrated optical comb in UV and visible spectrum.
ContributorsChen, Hong (Author) / Zhao, Yuji (Thesis advisor) / Yao, Yu (Committee member) / Wang, Liping (Committee member) / Ning, Cun-Zheng (Committee member) / Arizona State University (Publisher)
Created2020