Matching Items (11)

Filtering by

Clear all filters

153876-Thumbnail Image.png

Solving for the low-voltage/large-angle power-flow solutions by using the holomorphic embedding method

Description

For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions

is known as the high-voltage (HV) solution or operable solution. The rest of the solutions

are the low-voltage (LV), or large-angle, solutions.

In this report, a recently developed non-iterative algorithm

For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions

is known as the high-voltage (HV) solution or operable solution. The rest of the solutions

are the low-voltage (LV), or large-angle, solutions.

In this report, a recently developed non-iterative algorithm for solving the power-

flow (PF) problem using the holomorphic embedding (HE) method is shown as

being capable of finding the HV solution, while avoiding converging to LV solutions

nearby which is a drawback to all other iterative solutions. The HE method provides a

novel non-iterative procedure to solve the PF problems by eliminating the

non-convergence and initial-estimate dependency issues appeared in the traditional

iterative methods. The detailed implementation of the HE method is discussed in the

report.

While published work focuses mainly on finding the HV PF solution, modified

holomorphically embedded formulations are proposed in this report to find the

LV/large-angle solutions of the PF problem. It is theoretically proven that the proposed

method is guaranteed to find a total number of 2N solutions to the PF problem

and if no solution exists, the algorithm is guaranteed to indicate such by the oscillations

in the maximal analytic continuation of the coefficients of the voltage power series

obtained.

After presenting the derivation of the LV/large-angle formulations for both PQ

and PV buses, numerical tests on the five-, seven- and 14-bus systems are conducted

to find all the solutions of the system of nonlinear PF equations for those systems using

the proposed HE method.

After completing the derivation to find all the PF solutions using the HE method, it

is shown that the proposed HE method can be used to find only the of interest PF solutions

(i.e. type-1 PF solutions with one positive real-part eigenvalue in the Jacobian

matrix), with a proper algorithm developed. The closet unstable equilibrium point

(UEP), one of the type-1 UEP’s, can be obtained by the proposed HE method with

limited dynamic models included.

The numerical performance as well as the robustness of the proposed HE method is

investigated and presented by implementing the algorithm on the problematic cases and

large-scale power system.

Contributors

Agent

Created

Date Created
2015

A compact disc recording of three flute works by Daniel Dorff: April whirlwind, Nocturne caprice, and 9 walks down 7th avenue

Description

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections,

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.

Contributors

Agent

Created

Date Created
2010

151833-Thumbnail Image.png

Mel Bonis: six works for flute and piano

Description

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.

Contributors

Agent

Created

Date Created
2013

153275-Thumbnail Image.png

Highly sensitive in-plane strain mapping using a laser scanning technique

Description

In this work, a highly sensitive strain sensing technique is developed to realize in-plane strain mapping for microelectronic packages or emerging flexible or foldable devices, where mechanical or thermal strain is a major concern that could affect the performance of

In this work, a highly sensitive strain sensing technique is developed to realize in-plane strain mapping for microelectronic packages or emerging flexible or foldable devices, where mechanical or thermal strain is a major concern that could affect the performance of the working devices or even lead to the failure of the devices. Therefore strain sensing techniques to create a contour of the strain distribution is desired.

The developed highly sensitive micro-strain sensing technique differs from the existing strain mapping techniques, such as digital image correlation (DIC)/micro-Moiré techniques, in terms of working mechanism, by filling a technology gap that requires high spatial resolution while simultaneously maintaining a large field-of-view. The strain sensing mechanism relies on the scanning of a tightly focused laser beam onto the grating that is on the sample surface to detect the change in the diffracted beam angle as a result of the strain. Gratings are fabricated on the target substrates to serve as strain sensors, which carries the strain information in the form of variations in the grating period. The geometric structure of the optical system inherently ensures the high sensitivity for the strain sensing, where the nanoscale change of the grating period is amplified by almost six orders into a diffraction peak shift on the order of several hundred micrometers. It significantly amplifies the small signal measurements so that the desired sensitivity and accuracy can be achieved.

The important features, such as strain sensitivity and spatial resolution, for the strain sensing technique are investigated to evaluate the technique. The strain sensitivity has been validated by measurements on homogenous materials with well known reference values of CTE (coefficient of thermal expansion). 10 micro-strain has been successfully resolved from the silicon CTE extraction measurements. Furthermore, the spatial resolution has been studied on predefined grating patterns, which are assembled to mimic the uneven strain distribution across the sample surface. A resolvable feature size of 10 µm has been achieved with an incident laser spot size of 50 µm in diameter.

In addition, the strain sensing technique has been applied to a composite sample made of SU8 and silicon, as well as the microelectronic packages for thermal strain mappings.

Contributors

Agent

Created

Date Created
2014

151306-Thumbnail Image.png

Systems integration for biosensing: design, fabrication, and packaging of microelectronics, sensors, and microfluidics

Description

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.

Contributors

Agent

Created

Date Created
2012

152472-Thumbnail Image.png

Needleless electrospinning experimental study and nanofiber application in semiconductor packaging

Description

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.

Contributors

Agent

Created

Date Created
2014

156155-Thumbnail Image.png

Capable copper electrodeposition process for integrated circuit-substrate packaging manufacturing

Description

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine traces with varying widths of 3µm - 30µm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show “smart” control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.

Contributors

Agent

Created

Date Created
2018

158680-Thumbnail Image.png

Harnessing Multiscale Nonimaging Optics for Automotive Flash LiDAR and Heterogenous Semiconductor Integration

Description

Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these

Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these multi-scale interactions encode a great deal of information about distant objects, surfaces, and physical phenomena. For some remote sensing applications, obtaining a desired quantity of interest does not necessitate the explicit mapping of each point in object space to an image space with lenses or mirrors. Instead, only edge rays or physical boundaries of the sensing instrument are considered, while the spatial intensity distribution of optical energy received from a distant object informs its position, optical characteristics, or physical/chemical state.

Admittedly specialized, the principals and consequences of non-imaging optics are nevertheless applicable to heterogeneous semiconductor integration and automotive light detection and ranging (LiDAR), two important emerging technologies. Indeed, a review of relevant engineering literature finds two under-addressed remote sensing challenges. The semiconductor industry lacks an optical strain metrology with displacement resolution smaller than 100 nanometers capable of measuring strain fields between high-density interconnect lines. Meanwhile, little attention is paid to the per-meter sensing characteristics of scene-illuminating flash LiDAR in the context of automotive applications, despite the technology’s much lower cost. It is here that non-imaging optics offers intriguing instrument design and explanations of observed sensor performance at vastly different length scales.

In this thesis, an effective non-contact technique for mapping nanoscale mechanical strain fields and out-of-plane surface warping via laser diffraction is demonstrated, with application as a novel metrology for next-generation semiconductor packages. Additionally, object detection distance of low-cost automotive flash LiDAR, on the order of tens of meters, is understood though principals of optical energy transfer from the surface of a remote object to an extended multi-segment detector. Such information is of consequence when designing an automotive perception system to recognize various roadway objects in low-light scenarios.

Contributors

Agent

Created

Date Created
2020

158779-Thumbnail Image.png

Short-Term Reliability Evaluation of Glass-Glass Photovoltaic Modules: Influence of EVA and POE Encapsulants

Description

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.

Contributors

Agent

Created

Date Created
2020