Matching Items (11)

Filtering by

Clear all filters

132921-Thumbnail Image.png

Determining the Viability of an asymmetric and co-operative VR experience for two players utilizing a single VR headset and keyboard and mouse

Description

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays,

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.

Contributors

Agent

Created

Date Created
2019-05

134486-Thumbnail Image.png

Development of an Educational Video Game

Description

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to supplement educational instructions regarding nutrition. The educational game developed, "Nutribots" features the player acting as a nutrition based nanobot sent to the small intestine to help the body. Throughout the game the player will be asked nutrition based questions to test their knowledge of proteins, carbohydrates, and lipids. If the player is unable to answer the question, they must use game mechanics to progress and receive the information as a reward. The level is completed as soon as the question is answered correctly. If the player answers the questions incorrectly twenty times within the entirety of the game, the team loses faith in the player, and the player must reset from title screen. This is to limit guessing and to make sure the player retains the information through repetition once it is demonstrated that they do not know the answers. The team was split into two different groups for the development of this game. The first part of the team developed models, animations, and textures using Autodesk Maya 2016 and Marvelous Designer. The second part of the team developed code and shaders, and implemented products from the first team using Unity and Visual Studio. Once a prototype of the game was developed, it was show-cased amongst peers to gain feedback. Upon receiving feedback, the team implemented the desired changes accordingly. Development for this project began on November 2015 and ended on April 2017. Special thanks to Laura Avila Department Chair and Jennifer Nolz from Glendale Community College Technology and Consumer Sciences, Food and Nutrition Department.

Contributors

Created

Date Created
2017-05

136312-Thumbnail Image.png

A New Virtual Reality: Video Game Addiction in the Age of ESports

Description

While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the

While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction has become trickier as a passionate and growing fan base begins to act as a culture not unlike traditional sporting. These concerns call for a better understanding of what constitutes a harmful addiction to video games as its heavy practice becomes more financially viable and accepted into mainstream culture.

Contributors

Agent

Created

Date Created
2015-05

137137-Thumbnail Image.png

The Emblems: Speech-Recognition in Games

Description

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.

Contributors

Created

Date Created
2014-05

137149-Thumbnail Image.png

The Emblems: OpenGL

Description

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.

Contributors

Agent

Created

Date Created
2014-05

133743-Thumbnail Image.png

Game Engine for 2D Fighting Games with Simple DirectMedia Layer

Description

This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be

This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features while also responding to the environment based on key statuses. There is a playable test game that is the subject of a user study. The Game Engine's capabilities are shown by the test game and the limitations / missing features are discussed.

Contributors

Created

Date Created
2018-05

148262-Thumbnail Image.png

Non-Euclidean Worlds in Virtual Reality for Environmental Puzzles in Video Games

Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

Contributors

Agent

Created

Date Created
2021-05

148075-Thumbnail Image.png

Developing an Independent Video Game to Diversify University Recruitment

Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, the Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction, and the group continues to work to gain traction and bring the idea to more prospective students.

Contributors

Agent

Created

Date Created
2021-05

131140-Thumbnail Image.png

Intelli-Trail

Description

Intelli-Trail is a game where the player plays as a small blue man with the simple goal of reaching the purple door. The player will primarily interact with the game through combat. The game itself will react to

Intelli-Trail is a game where the player plays as a small blue man with the simple goal of reaching the purple door. The player will primarily interact with the game through combat. The game itself will react to the patterns in the players behavior to progressively become harder for the player to win.

Contributors

Agent

Created

Date Created
2020-05

137623-Thumbnail Image.png

Intelligent Input Parser for Organic Chemistry Reagent Questions

Description

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.

Contributors

Agent

Created

Date Created
2013-05