Matching Items (14)
Filtering by

Clear all filters

155943-Thumbnail Image.png
Description
Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections

Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections of smaller objects held together by gravity and possibly cohesion. These “rubble-pile” objects may experience the Brazil Nut Effect (BNE). When a collection of particles of similar densities, but of different sizes, is shaken, smaller particles will move parallel to the local gravity vector while larger objects will do the opposite. Thus, when asteroids are shaken by impacts, they may experience the BNE as possibly evidenced by large boulders seen on their surfaces. I found while the BNE is plausible on asteroids, it is confined to only the outer layers. The Moon, which formed with a Lunar Magma Ocean (LMO), is the next topic of this work. The LMO is due to the Moon forming rapidly after a giant impact between the proto-Earth and another planetary body. The first 80% of the LMO solidified rapidly at which point a floatation crust formed and slowed solidification of the remaining LMO. Impact bombardment during this cooling process, while an important component, has not been studied in detail. Impacts considered here are from debris generated during the formation of the Moon. I developed a thermal model that incorporates impacts and find that impacts may have either expedited or delayed LMO solidification. Finally, I return to affect to consider the differences in attitudes towards science between students enrolled in fully-online degree programs and those enrolled in traditional, in-person degree programs. I analyzed pre- and post-course survey data from the online astrobiology course Habitable Worlds. Unlike their traditional program counterparts, students enrolled in online programs started the course with better attitudes towards science and also further changed towards more positive attitudes during the course. Along with important conclusions in three research fields, this work aims to demonstrate the importance of affect in both scientific research and science education.
ContributorsDingatantrige Perera, Jude Viranga (Author) / Asphaug, Erik (Thesis advisor) / Semken, Steven (Thesis advisor) / Anbar, Ariel (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Robinson, Mark (Committee member) / Arizona State University (Publisher)
Created2017
136312-Thumbnail Image.png
Description
While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction

While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction has become trickier as a passionate and growing fan base begins to act as a culture not unlike traditional sporting. These concerns call for a better understanding of what constitutes a harmful addiction to video games as its heavy practice becomes more financially viable and accepted into mainstream culture.
ContributorsGohil, Abhishek Bhagirathsinh (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133743-Thumbnail Image.png
Description
This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features

This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features while also responding to the environment based on key statuses. There is a playable test game that is the subject of a user study. The Game Engine's capabilities are shown by the test game and the limitations / missing features are discussed.
ContributorsStanton, Nicholas Scott (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Computer Science and Engineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137137-Thumbnail Image.png
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
ContributorsNguyen, Jordan Ngoc (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137149-Thumbnail Image.png
Description
The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.
ContributorsHsia, Allen (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
134486-Thumbnail Image.png
Description
The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to supplement educational instructions regarding nutrition. The educational game developed, "Nutribots" features the player acting as a nutrition based nanobot sent to the small intestine to help the body. Throughout the game the player will be asked nutrition based questions to test their knowledge of proteins, carbohydrates, and lipids. If the player is unable to answer the question, they must use game mechanics to progress and receive the information as a reward. The level is completed as soon as the question is answered correctly. If the player answers the questions incorrectly twenty times within the entirety of the game, the team loses faith in the player, and the player must reset from title screen. This is to limit guessing and to make sure the player retains the information through repetition once it is demonstrated that they do not know the answers. The team was split into two different groups for the development of this game. The first part of the team developed models, animations, and textures using Autodesk Maya 2016 and Marvelous Designer. The second part of the team developed code and shaders, and implemented products from the first team using Unity and Visual Studio. Once a prototype of the game was developed, it was show-cased amongst peers to gain feedback. Upon receiving feedback, the team implemented the desired changes accordingly. Development for this project began on November 2015 and ended on April 2017. Special thanks to Laura Avila Department Chair and Jennifer Nolz from Glendale Community College Technology and Consumer Sciences, Food and Nutrition Department.
ContributorsNolz, Daisy (Co-author) / Martin, Austin (Co-author) / Quinio, Santiago (Co-author) / Armstrong, Jessica (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Valderrama, Jamie (Committee member) / School of Arts, Media and Engineering (Contributor) / School of Film, Dance and Theatre (Contributor) / Department of English (Contributor) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132921-Thumbnail Image.png
Description
Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.
ContributorsJorgensen, Nicholas Keith (Co-author) / Jorgensen, Caitlin Nicole (Co-author) / Selgrad, Justin (Thesis director) / Ehgner, Arnaud (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147884-Thumbnail Image.png
Description

Affective computing allows computers to monitor and influence people’s affects, in other words emotions. Currently, there is a lot of research exploring what can be done with this technology. There are many fields, such as education, healthcare, and marketing, that this technology can transform. However, it is important to question

Affective computing allows computers to monitor and influence people’s affects, in other words emotions. Currently, there is a lot of research exploring what can be done with this technology. There are many fields, such as education, healthcare, and marketing, that this technology can transform. However, it is important to question what should be done. There are unique ethical considerations in regards to affective computing that haven't been explored. The purpose of this study is to understand the user’s perspective of affective computing in regards to the Association of Computing Machinery (ACM) Code of Ethics, to ultimately start developing a better understanding of these ethical concerns. For this study, participants were required to watch three different videos and answer a questionnaire, all while wearing an Emotiv EPOC+ EEG headset that measures their emotions. Using the information gathered, the study explores the ethics of affective computing through the user’s perspective.

ContributorsInjejikian, Angelica (Author) / Gonzalez-Sanchez, Javier (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148075-Thumbnail Image.png
Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, the Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction, and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsDong, Edmund Engsun (Co-author) / Ouellette, Abigail (Co-author) / Cole, Tyler (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05