Matching Items (3)
Filtering by

Clear all filters

133568-Thumbnail Image.png
Description
The functional programming paradigm is able to provide clean and concise solutions to many common programming problems, as well as promote safer, more testable code by encouraging an isolation of state-modifying behavior. Functional programming is finding its way into traditionally object-oriented and imperative languages, most notably with the introduction of

The functional programming paradigm is able to provide clean and concise solutions to many common programming problems, as well as promote safer, more testable code by encouraging an isolation of state-modifying behavior. Functional programming is finding its way into traditionally object-oriented and imperative languages, most notably with the introduction of Java 8 and in LINQ for C#. However, no functional programming language has achieved widespread adoption, meaning that students without a formal computer science background who learn technology on-demand for personal projects or for business may not come across functional programming in a significant way. Programmers need a reason to spend time learning these concepts to not miss out on the subtle but profound benefits they provide. I propose the use of a video game as an environment in which learning functional programming is the player's goal. In this carefully constructed video game, learning functional programming is the key to progression. Players will be motivated to learn and will be given an immediate chance to test and demonstrate their understanding. The game, named Lambda Starship (stylized as (lambda () starship)), is a 3D first-person video game. It takes place in a spaceship that, due to extreme magnetic interference, has lost all on-board software while leaving the hardware completely intact. The player is tasked to write software using functional programming paradigms to replace the old software and bring the spaceship back to a working state. Throughout the process, the player is guided by an in-game manual and other descriptive resources. The game is implemented in Unity and scripted using C#. The game's educational and entertainment value was evaluated with a study case. 24 undergraduate students at Arizona State University (ASU) played the game and were surveyed detailing their experience. During play, user statistics were recorded automatically, providing a data-driven way to analyze where players struggled with the concepts introduced in the game. Reception was neutral or positive in both the entertainment and educational sides of the game. A few players expressed concerns about the manual in its form factor and engagement value.
ContributorsCompton, Tyler Alexander (Author) / Gonzalez-Sanchez, Javier (Thesis director) / Bansal, Srividya (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and tightly coupled component of an instructional module. The Instructional Module Development System, or IMODS, seeks to improve STEM, or ‘science, technology, engineering, and math’, education, by equipping educators with a powerful informational tool that helps guide course design by providing information based on contemporary research about pedagogical methodology and assessment practices. This is particularly salient within the higher-education STEM fields because many instructors come from backgrounds that are more technical and most Ph.Ds. in science fields have traditionally not focused on preparing doctoral candidates to teach. This thesis project aims to apply a multidisciplinary approach, blending educational psychology and computer science, to help improve STEM education. By developing an instructional module-scheduling feature for the Web-based IMODS, Instructional Module Development System, system, we can help instructors plan out and organize their course work inside and outside of the classroom, while providing them with relevant helpful research that will help them improve their courses. This article illustrates the iterative design process to gather background research on pacing of workload and learning activities and their influence on student knowledge acquisition, constructively critique and analyze pre-existing information technology (IT) scheduling tools, synthesize graphical user interface, or GUI, mockups based on the background research, and then implement a functional-working prototype using the IMODs framework.
ContributorsCoomber, Wesley Poblete (Author) / Bansal, Srividya (Thesis director) / Lindquist, Timothy (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147947-Thumbnail Image.png
Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, The Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsCole, Tyler Phillip (Co-author) / Ouellette, Abigail (Co-author) / Dong, Edmund E. (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Software Engineering (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05