Matching Items (13)
Filtering by

Clear all filters

136312-Thumbnail Image.png
Description
While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction

While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction has become trickier as a passionate and growing fan base begins to act as a culture not unlike traditional sporting. These concerns call for a better understanding of what constitutes a harmful addiction to video games as its heavy practice becomes more financially viable and accepted into mainstream culture.
ContributorsGohil, Abhishek Bhagirathsinh (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133743-Thumbnail Image.png
Description
This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features

This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features while also responding to the environment based on key statuses. There is a playable test game that is the subject of a user study. The Game Engine's capabilities are shown by the test game and the limitations / missing features are discussed.
ContributorsStanton, Nicholas Scott (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Computer Science and Engineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137137-Thumbnail Image.png
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
ContributorsNguyen, Jordan Ngoc (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137149-Thumbnail Image.png
Description
The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.
ContributorsHsia, Allen (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
134486-Thumbnail Image.png
Description
The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to supplement educational instructions regarding nutrition. The educational game developed, "Nutribots" features the player acting as a nutrition based nanobot sent to the small intestine to help the body. Throughout the game the player will be asked nutrition based questions to test their knowledge of proteins, carbohydrates, and lipids. If the player is unable to answer the question, they must use game mechanics to progress and receive the information as a reward. The level is completed as soon as the question is answered correctly. If the player answers the questions incorrectly twenty times within the entirety of the game, the team loses faith in the player, and the player must reset from title screen. This is to limit guessing and to make sure the player retains the information through repetition once it is demonstrated that they do not know the answers. The team was split into two different groups for the development of this game. The first part of the team developed models, animations, and textures using Autodesk Maya 2016 and Marvelous Designer. The second part of the team developed code and shaders, and implemented products from the first team using Unity and Visual Studio. Once a prototype of the game was developed, it was show-cased amongst peers to gain feedback. Upon receiving feedback, the team implemented the desired changes accordingly. Development for this project began on November 2015 and ended on April 2017. Special thanks to Laura Avila Department Chair and Jennifer Nolz from Glendale Community College Technology and Consumer Sciences, Food and Nutrition Department.
ContributorsNolz, Daisy (Co-author) / Martin, Austin (Co-author) / Quinio, Santiago (Co-author) / Armstrong, Jessica (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Valderrama, Jamie (Committee member) / School of Arts, Media and Engineering (Contributor) / School of Film, Dance and Theatre (Contributor) / Department of English (Contributor) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132921-Thumbnail Image.png
Description
Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.
ContributorsJorgensen, Nicholas Keith (Co-author) / Jorgensen, Caitlin Nicole (Co-author) / Selgrad, Justin (Thesis director) / Ehgner, Arnaud (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134339-Thumbnail Image.png
Description
Implementing a distributed algorithm is more complicated than implementing a non-distributed algorithm. This is because distributed systems involve coordination of different processes each of which has a partial view of the global system state. The only way to share information in a distributed system is by message passing. Task that

Implementing a distributed algorithm is more complicated than implementing a non-distributed algorithm. This is because distributed systems involve coordination of different processes each of which has a partial view of the global system state. The only way to share information in a distributed system is by message passing. Task that are straightforward in a non-distributed system, like deciding on the value of a global system state, can be quite complicated to achieve in a distributed system [1]. On top of the difficulties caused by the distributed nature of the computations, distributed systems typically need to be able to operate normally even if some of the nodes in the system are faulty which further adds to the uncertainty that processes have about the global state. Many factors make the implementation of a distributed algorithms difficult. Design patterns [2] are useful in simplifying the development of general algorithms. A design pattern describes a high level solution to a common, abstract problem that many systems may face. Common structural, creational, and behavioral problems are identified and elegantly solved by design patterns. By identifying features that an algorithm uses, and framing each feature as one of the common problems that a specific design pattern solves, designing a robust implementation of an algorithm becomes more manageable. In this way, design patterns can aid the implementation of algorithms. Unfortunately, design patterns are typically not discussed when developing distributed algorithms. Because correctly developing a distributed algorithm is difficult, many papers (eg. [1], [3], [4]) focus on verifying the correctness of the developed algorithm. Papers that are more practical ([5], [6]) establish the correctness of their algorithm and that their algorithm is efficient enough to be practical. However, papers on distributed algorithms usually make little mention of design patterns. The goal of this work was to gain experience implementing distributed systems including learning the application of design patterns and the application of related technical topics. This was achieved by implementing a currently unpublished algorithm that is tentatively called Bakery Consensus. Bakery Consensus is a replicated state-machine protocol that can tolerate servers with Byzantine faults, but assumes non-faulty clients. The algorithm also establishes non-skipping timestamps for each operation completed by the replicated state-machine. The design of the structure, communication, and creation of the different system parts depended heavily upon the book Design Patterns [2]. After implementing the system, the success of the in implementing its various parts was based upon their ability to satisfy the SOLID [7] principles as well as their ability to establish low coupling and high cohesion [8]. The rest of this paper is organized as follows. We begin by providing background information about distributed algorithms, including replicated state-machine protocols and the Bakery Consensus algorithm. Section 3 gives a background on several design patterns and software engineering principles that were used in the development process. Section 4 discusses the well designed parts of the system that used design patterns, and how these design patterns were chosen. Section 5 discusses well designed system parts that relied upon other technical topics. Section 6 discusses system parts that need redesign. The conclusion summarizes what was accomplished by the implementation process and the lessons learned about design patterns for distributed algorithms.
ContributorsStoutenburg, Tristan Kaleb (Author) / Bazzi, Rida (Thesis director) / Richa, Andrea (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148075-Thumbnail Image.png
Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, the Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction, and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsDong, Edmund Engsun (Co-author) / Ouellette, Abigail (Co-author) / Cole, Tyler (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will be described is self-play in video games, where a neural model will be researched and described that will teach a computer to complete a level of Super Mario World (1990) on its own. The neural model in question was inspired by the academic paper “Evolving Neural Networks through Augmenting Topologies”, which was written by Kenneth O. Stanley and Risto Miikkulainen of University of Texas at Austin. The model that will actually be described is from YouTuber SethBling of the California Institute of Technology. The second department that will be described is cybersecurity, where an algorithm is described from the academic paper “Process Based Volatile Memory Forensics for Ransomware Detection”, written by Asad Arfeen, Muhammad Asim Khan, Obad Zafar, and Usama Ahsan. This algorithm utilizes Python and the Volatility framework to detect malicious software in an infected system.

ContributorsBallecer, Joshua (Author) / Yang, Yezhou (Thesis director) / Luo, Yiran (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05