Matching Items (4)

Filtering by

Clear all filters

Deep Periodic Networks

Description

In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the

In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the need for unique controllers. In this thesis, two reinforcement learning algorithms, Deep Deterministic Policy Gradient and Group Factor Policy Search are compared based upon their performance in the bipedal walking environment provided by OpenAI gym. These algorithms are evaluated on their performance in the environment and their sample efficiency.

Contributors

Agent

Created

Date Created
2018-12

133397-Thumbnail Image.png

Comparative Analysis in Acquisition of Coding Skills

Description

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder &

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.

Contributors

Agent

Created

Date Created
2018-05

157799-Thumbnail Image.png

Sample-Efficient Reinforcement Learning of Robot Control Policies in the Real World

Description

The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment

The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment to further the learning process. The behaviour is optimized by maximizing a reward function, which assigns high numerical values to desired behaviours. Especially in robotics, such interactions with the environment are expensive in terms of the required execution time, human involvement, and mechanical degradation of the system itself. Therefore, this thesis aims to introduce sample-efficient reinforcement learning methods which are applicable to real-world settings and control tasks such as bimanual manipulation and locomotion. Sample efficiency is achieved through directed exploration, either by using dimensionality reduction or trajectory optimization methods. Finally, it is demonstrated how data-efficient reinforcement learning methods can be used to optimize the behaviour and morphology of robots at the same time.

Contributors

Agent

Created

Date Created
2019

161939-Thumbnail Image.png

Learning Complex Behaviors from Simple Ones: An analysis of Behavior-based Modular Design for RL Agents

Description

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.

Contributors

Agent

Created

Date Created
2021