Matching Items (5)
Filtering by

Clear all filters

158527-Thumbnail Image.png
Description
With the increased demand for genetically modified T-cells in treating hematological malignancies, the need for an optimized measurement policy within the current good manufacturing practices for better quality control has grown greatly. There are several steps involved in manufacturing gene therapy. These steps are for the autologous-type gene therapy, in

With the increased demand for genetically modified T-cells in treating hematological malignancies, the need for an optimized measurement policy within the current good manufacturing practices for better quality control has grown greatly. There are several steps involved in manufacturing gene therapy. These steps are for the autologous-type gene therapy, in chronological order, are harvesting T-cells from the patient, activation of the cells (thawing the cryogenically frozen cells after transport to manufacturing center), viral vector transduction, Chimeric Antigen Receptor (CAR) attachment during T-cell expansion, then infusion into patient. The need for improved measurement heuristics within the transduction and expansion portions of the manufacturing process has reached an all-time high because of the costly nature of manufacturing the product, the high cycle time (approximately 14-28 days from activation to infusion), and the risk for external contamination during manufacturing that negatively impacts patients post infusion (such as illness and death).

The main objective of this work is to investigate and improve measurement policies on the basis of quality control in the transduction/expansion bio-manufacturing processes. More specifically, this study addresses the issue of measuring yield within the transduction/expansion phases of gene therapy. To do so, it was decided to model the process as a Markov Decision Process where the decisions being made are optimally chosen to create an overall optimal measurement policy; for a set of predefined parameters.
ContributorsStarkey, Michaela (Author) / Pedrielli, Giulia (Thesis advisor) / Li, Jing (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2020
171878-Thumbnail Image.png
Description
The COVID-19 outbreak that started in 2020, brought the world to its knees and is still a menace after three years. Over eighty-five million cases and over a million deaths have occurred due to COVID-19 during that time in the United States alone. A great deal of research has gone

The COVID-19 outbreak that started in 2020, brought the world to its knees and is still a menace after three years. Over eighty-five million cases and over a million deaths have occurred due to COVID-19 during that time in the United States alone. A great deal of research has gone into making epidemic models to show the impact of the virus by plotting the cases, deaths, and hospitalization due to COVID-19. However, there is very less research that has anything to do with mapping different variants of COVID-19. SARS-CoV-2, the virus that causes COVID-19, constantly mutates and multiple variants have emerged over time. The major variants include Beta, Gamma, Delta and the recent one, Omicron. The purpose of the research done in this thesis is to modify one of the epidemic models i.e., the Spatially Informed Rapid Testing for Epidemic Model (SIRTEM), in such a way that various variants of the virus will be modelled at the same time. The model will be assessed by adding the Omicron and the Delta variants and in doing so, the effects of different variants can be studied by looking at the positive cases, hospitalizations, and deaths from both the variants for the Arizona Population. The focus will be to find the best infection rate and testing rate by using Random numbers so that the published positive cases and the positive cases derived from the model have the least mean square error.
ContributorsVarghese, Allen Moncey (Author) / Pedrielli, Giulia (Thesis advisor) / Candan, Kasim S (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
158093-Thumbnail Image.png
Description
Model-based clustering is a sub-field of statistical modeling and machine learning. The mixture models use the probability to describe the degree of the data point belonging to the cluster, and the probability is updated iteratively during the clustering. While mixture models have demonstrated the superior performance in handling noisy data

Model-based clustering is a sub-field of statistical modeling and machine learning. The mixture models use the probability to describe the degree of the data point belonging to the cluster, and the probability is updated iteratively during the clustering. While mixture models have demonstrated the superior performance in handling noisy data in many fields, there exist some challenges for high dimensional dataset. It is noted that among a large number of features, some may not indeed contribute to delineate the cluster profiles. The inclusion of these “noisy” features will confuse the model to identify the real structure of the clusters and cost more computational time. Recognizing the issue, in this dissertation, I propose a new feature selection algorithm for continuous dataset first and then extend to mixed datatype. Finally, I conduct uncertainty quantification for the feature selection results as the third topic.

The first topic is an embedded feature selection algorithm termed Expectation-Selection-Maximization (ESM) model that can automatically select features while optimizing the parameters for Gaussian Mixture Model. I introduce a relevancy index (RI) revealing the contribution of the feature in the clustering process to assist feature selection. I demonstrate the efficacy of the ESM by studying two synthetic datasets, four benchmark datasets, and an Alzheimer’s Disease dataset.

The second topic focuses on extending the application of ESM algorithm to handle mixed datatypes. The Gaussian mixture model is generalized to Generalized Model of Mixture (GMoM), which can not only handle continuous features, but also binary and nominal features.

The last topic is about Uncertainty Quantification (UQ) of the feature selection. A new algorithm termed ESOM is proposed, which takes the variance information into consideration while conducting feature selection. Also, a set of outliers are generated in the feature selection process to infer the uncertainty in the input data. Finally, the selected features and detected outlier instances are evaluated by visualization comparison.
ContributorsFu, Yinlin (Author) / Wu, Teresa (Thesis advisor) / Mirchandani, Pitu (Committee member) / Li, Jing (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2020
158883-Thumbnail Image.png
Description
Nonregular designs are a preferable alternative to regular resolution four designs because they avoid confounding two-factor interactions. As a result nonregular designs can estimate and identify a few active two-factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard screening strategies can fail to identify all

Nonregular designs are a preferable alternative to regular resolution four designs because they avoid confounding two-factor interactions. As a result nonregular designs can estimate and identify a few active two-factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard screening strategies can fail to identify all active effects. In this research, two-level nonregular screening designs with orthogonal main effects will be discussed. By utilizing knowledge of the alias structure, a design based model selection process for analyzing nonregular designs is proposed.

The Aliased Informed Model Selection (AIMS) strategy is a design specific approach that is compared to three generic model selection methods; stepwise regression, least absolute shrinkage and selection operator (LASSO), and the Dantzig selector. The AIMS approach substantially increases the power to detect active main effects and two-factor interactions versus the aforementioned generic methodologies. This research identifies design specific model spaces; sets of models with strong heredity, all estimable, and exhibit no model confounding. These spaces are then used in the AIMS method along with design specific aliasing rules for model selection decisions. Model spaces and alias rules are identified for three designs; 16-run no-confounding 6, 7, and 8-factor designs. The designs are demonstrated with several examples as well as simulations to show the AIMS superiority in model selection.

A final piece of the research provides a method for augmenting no-confounding designs based on a model spaces and maximum average D-efficiency. Several augmented designs are provided for different situations. A final simulation with the augmented designs shows strong results for augmenting four additional runs if time and resources permit.
ContributorsMetcalfe, Carly E (Author) / Montgomery, Douglas C. (Thesis advisor) / Jones, Bradley (Committee member) / Pan, Rong (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2020
161846-Thumbnail Image.png
Description
Complex systems appear when interaction among system components creates emergent behavior that is difficult to be predicted from component properties. The growth of Internet of Things (IoT) and embedded technology has increased complexity across several sectors (e.g., automotive, aerospace, agriculture, city infrastructures, home technologies, healthcare) where the paradigm of cyber-physical

Complex systems appear when interaction among system components creates emergent behavior that is difficult to be predicted from component properties. The growth of Internet of Things (IoT) and embedded technology has increased complexity across several sectors (e.g., automotive, aerospace, agriculture, city infrastructures, home technologies, healthcare) where the paradigm of cyber-physical systems (CPSs) has become a standard. While CPS enables unprecedented capabilities, it raises new challenges in system design, certification, control, and verification. When optimizing system performance computationally expensive simulation tools are often required, and search algorithms that sequentially interrogate a simulator to learn promising solutions are in great demand. This class of algorithms are black-box optimization techniques. However, the generality that makes black-box optimization desirable also causes computational efficiency difficulties when applied real problems. This thesis focuses on Bayesian optimization, a prominent black-box optimization family, and proposes new principles, translated in implementable algorithms, to scale Bayesian optimization to highly expensive, large scale problems. Four problem contexts are studied and approaches are proposed for practically applying Bayesian optimization concepts, namely: (1) increasing sample efficiency of a highly expensive simulator in the presence of other sources of information, where multi-fidelity optimization is used to leverage complementary information sources; (2) accelerating global optimization in the presence of local searches by avoiding over-exploitation with adaptive restart behavior; (3) scaling optimization to high dimensional input spaces by integrating Game theoretic mechanisms with traditional techniques; (4) accelerating optimization by embedding function structure when the reward function is a minimum of several functions. In the first context this thesis produces two multi-fidelity algorithms, a sample driven and model driven approach, and is implemented to optimize a serial production line; in the second context the Stochastic Optimization with Adaptive Restart (SOAR) framework is produced and analyzed with multiple applications to CPS falsification problems; in the third context the Bayesian optimization with sample fictitious play (BOFiP) algorithm is developed with an implementation in high-dimensional neural network training; in the last problem context the minimum surrogate optimization (MSO) framework is produced and combined with both Bayesian optimization and the SOAR framework with applications in simultaneous falsification of multiple CPS requirements.
ContributorsMathesen, Logan (Author) / Pedrielli, Giulia (Thesis advisor) / Candan, Kasim (Committee member) / Fainekos, Georgios (Committee member) / Gel, Esma (Committee member) / Montgomery, Douglas (Committee member) / Zabinsky, Zelda (Committee member) / Arizona State University (Publisher)
Created2021