Matching Items (28)
Filtering by

Clear all filters

152223-Thumbnail Image.png
Description
Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has been done in the ALT area and optimal design for ALT is a major topic. This dissertation consists of three main studies. First, a methodology of finding optimal design for ALT with right censoring and interval censoring have been developed and it employs the proportional hazard (PH) model and generalized linear model (GLM) to simplify the computational process. A sensitivity study is also given to show the effects brought by parameters to the designs. Second, an extended version of I-optimal design for ALT is discussed and then a dual-objective design criterion is defined and showed with several examples. Also in order to evaluate different candidate designs, several graphical tools are developed. Finally, when there are more than one models available, different model checking designs are discussed.
ContributorsYang, Tao (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Borror, Connie (Committee member) / Rigdon, Steve (Committee member) / Arizona State University (Publisher)
Created2013
152189-Thumbnail Image.png
Description
This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’

This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’ test scores as outcome variables and teachers’ contributions as random effects to ascribe changes in student performance to the teachers who have taught them. The VAMs teacher score is the empirical best linear unbiased predictor (EBLUP). This approach is limited by the adequacy of the assumed model specification with respect to the unknown underlying model. In that regard, this study proposes alternative ways to rank teacher effects that are not dependent on a given model by introducing two variable importance measures (VIMs), the node-proportion and the covariate-proportion. These VIMs are novel because they take into account the final configuration of the terminal nodes in the constitutive trees in a random forest. In a simulation study, under a variety of conditions, true rankings of teacher effects are compared with estimated rankings obtained using three sources: the newly proposed VIMs, existing VIMs, and EBLUPs from the assumed linear model specification. The newly proposed VIMs outperform all others in various scenarios where the model was misspecified. The second study develops two novel interaction measures. These measures could be used within but are not restricted to the VAM framework. The distribution-based measure is constructed to identify interactions in a general setting where a model specification is not assumed in advance. In turn, the mean-based measure is built to estimate interactions when the model specification is assumed to be linear. Both measures are unique in their construction; they take into account not only the outcome values, but also the internal structure of the trees in a random forest. In a separate simulation study, under a variety of conditions, the proposed measures are found to identify and estimate second-order interactions.
ContributorsValdivia, Arturo (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Broatch, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
151976-Thumbnail Image.png
Description
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.
ContributorsIsmay, Chester (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153145-Thumbnail Image.png
Description
The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually calculated using a simple linear extrapolation based on the annual field degradation rate (say, 0.8% drop in power output per year). It has been 26 years since systematic studies on solar PV module lifetime prediction were undertaken as part of the 11-year flat-plate solar array (FSA) project of the Jet Propulsion Laboratory (JPL) funded by DOE. Since then, PV modules have gone through significant changes in construction materials and design; making most of the field data obsolete, though the effect field stressors on the old designs/materials is valuable to be understood. Efforts have been made to adapt some of the techniques developed to the current technologies, but they are too often limited in scope and too reliant on empirical generalizations of previous results. Some systematic approaches have been proposed based on accelerated testing, but no or little experimental studies have followed. Consequently, the industry does not exactly know today how to test modules for a 20 - 30 years lifetime.

This research study focuses on the behavior of crystalline silicon PV module technology in the dry and hot climatic condition of Tempe/Phoenix, Arizona. A three-phase approach was developed: (1) A quantitative failure modes, effects, and criticality analysis (FMECA) was developed for prioritizing failure modes or mechanisms in a given environment; (2) A time-series approach was used to model environmental stress variables involved and prioritize their effect on the power output drop; and (3) A procedure for developing a prediction model was proposed for the climatic specific condition based on accelerated degradation testing
ContributorsKuitche, Joseph Mathurin (Author) / Pan, Rong (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153224-Thumbnail Image.png
Description
In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of our research is on tackling the challenging problem of constructing

exact

In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of our research is on tackling the challenging problem of constructing

exact designs for GLMs, that are robust against parameter, link and model

uncertainties by improving an existing algorithm and providing a new one, based on using a continuous particle swarm optimization (PSO) and spectral clustering. The proposed algorithm is sufficiently versatile to accomodate most popular design selection criteria, and we concentrate on providing robust designs for GLMs, using the D and A optimality criterion. The second part of our research is on providing an algorithm

that is a faster alternative to a recently proposed genetic algorithm (GA) to construct optimal designs for fMRI studies. Our algorithm is built upon a discrete version of the PSO.
ContributorsTemkit, M'Hamed (Author) / Kao, Jason (Thesis advisor) / Reiser, Mark R. (Committee member) / Barber, Jarrett (Committee member) / Montgomery, Douglas C. (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2014
150135-Thumbnail Image.png
Description
It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among

It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among multi-categorical variables. Pearson's chi-squared statistic is well-known in goodness-of-fit testing, but it is sometimes considered to produce an omnibus test as it gives little guidance to the source of poor fit once the null hypothesis is rejected. However, its components can provide powerful directional tests. In this dissertation, orthogonal components are used to develop goodness-of-fit tests for models fit to the counts obtained from the cross-classification of multi-category dependent variables. Ordinal categories are assumed. Orthogonal components defined on marginals are obtained when analyzing multi-dimensional contingency tables through the use of the QR decomposition. A subset of these orthogonal components can be used to construct limited-information tests that allow one to identify the source of lack-of-fit and provide an increase in power compared to Pearson's test. These tests can address the adverse effects presented when data are sparse. The tests rely on the set of first- and second-order marginals jointly, the set of second-order marginals only, and the random forest method, a popular algorithm for modeling large complex data sets. The performance of these tests is compared to the likelihood ratio test as well as to tests based on orthogonal polynomial components. The derived goodness-of-fit tests are evaluated with studies for detecting two- and three-way associations that are not accounted for by a categorical variable factor model with a single latent variable. In addition the tests are used to investigate the case when the model misspecification involves parameter constraints for large and sparse contingency tables. The methodology proposed here is applied to data from the 38th round of the State Survey conducted by the Institute for Public Policy and Michigan State University Social Research (2005) . The results illustrate the use of the proposed techniques in the context of a sparse data set.
ContributorsMilovanovic, Jelena (Author) / Young, Dennis (Thesis advisor) / Reiser, Mark R. (Thesis advisor) / Wilson, Jeffrey (Committee member) / Eubank, Randall (Committee member) / Yang, Yan (Committee member) / Arizona State University (Publisher)
Created2011
150494-Thumbnail Image.png
Description
Value-added models (VAMs) are used by many states to assess contributions of individual teachers and schools to students' academic growth. The generalized persistence VAM, one of the most flexible in the literature, estimates the ``value added'' by individual teachers to their students' current and future test scores by employing a

Value-added models (VAMs) are used by many states to assess contributions of individual teachers and schools to students' academic growth. The generalized persistence VAM, one of the most flexible in the literature, estimates the ``value added'' by individual teachers to their students' current and future test scores by employing a mixed model with a longitudinal database of test scores. There is concern, however, that missing values that are common in the longitudinal student scores can bias value-added assessments, especially when the models serve as a basis for personnel decisions -- such as promoting or dismissing teachers -- as they are being used in some states. Certain types of missing data require that the VAM be modeled jointly with the missingness process in order to obtain unbiased parameter estimates. This dissertation studies two problems. First, the flexibility and multimembership random effects structure of the generalized persistence model lead to computational challenges that have limited the model's availability. To this point, no methods have been developed for scalable maximum likelihood estimation of the model. An EM algorithm to compute maximum likelihood estimates efficiently is developed, making use of the sparse structure of the random effects and error covariance matrices. The algorithm is implemented in the package GPvam in R statistical software. Illustrations of the gains in computational efficiency achieved by the estimation procedure are given. Furthermore, to address the presence of potentially nonignorable missing data, a flexible correlated random effects model is developed that extends the generalized persistence model to jointly model the test scores and the missingness process, allowing the process to depend on both students and teachers. The joint model gives the ability to test the sensitivity of the VAM to the presence of nonignorable missing data. Estimation of the model is challenging due to the non-hierarchical dependence structure and the resulting intractable high-dimensional integrals. Maximum likelihood estimation of the model is performed using an EM algorithm with fully exponential Laplace approximations for the E step. The methods are illustrated with data from university calculus classes and with data from standardized test scores from an urban school district.
ContributorsKarl, Andrew (Author) / Lohr, Sharon L (Thesis advisor) / Yang, Yan (Thesis advisor) / Kao, Ming-Hung (Committee member) / Montgomery, Douglas C. (Committee member) / Wilson, Jeffrey R (Committee member) / Arizona State University (Publisher)
Created2012
151128-Thumbnail Image.png
Description
This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection in the case of nonnormal data and (iii) formulation of a partial canonical correlation concept for continuous time stochastic processes. The finite dimensional SVD has an infinite dimensional generalization to compact operators. However, the form of the finite dimensional GSVD developed in, e.g., Van Loan does not extend directly to infinite dimensions as a result of a key step in the proof that is specific to the matrix case. Thus, the first problem of interest is to find an infinite dimensional version of the GSVD. One such GSVE for compact operators on separable Hilbert spaces is developed. The second problem concerns regularization parameter estimation. The chi-squared method for nonnormal data is considered. A form of the optimized regularization criterion that pertains to measured data or signals with nonnormal noise is derived. Large sample theory for phi-mixing processes is used to derive a central limit theorem for the chi-squared criterion that holds under certain conditions. Departures from normality are seen to manifest in the need for a possibly different scale factor in normalization rather than what would be used under the assumption of normality. The consequences of our large sample work are illustrated by empirical experiments. For the third problem, a new approach is examined for studying the relationships between a collection of functional random variables. The idea is based on the work of Sunder that provides mappings to connect the elements of algebraic and orthogonal direct sums of subspaces in a Hilbert space. When combined with a key isometry associated with a particular Hilbert space indexed stochastic process, this leads to a useful formulation for situations that involve the study of several second order processes. In particular, using our approach with two processes provides an independent derivation of the functional canonical correlation analysis (CCA) results of Eubank and Hsing. For more than two processes, a rigorous derivation of the functional partial canonical correlation analysis (PCCA) concept that applies to both finite and infinite dimensional settings is obtained.
ContributorsHuang, Qing (Author) / Eubank, Randall (Thesis advisor) / Renaut, Rosemary (Thesis advisor) / Cochran, Douglas (Committee member) / Gelb, Anne (Committee member) / Young, Dennis (Committee member) / Arizona State University (Publisher)
Created2012
150996-Thumbnail Image.png
Description
A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis

A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis (RMA) regression and is often used instead of Ordinary Least Squares (OLS) regression. Results for confidence intervals, hypothesis testing and asymptotic distributions of coefficient estimates in the bivariate case are reviewed. A generalization of RMA to more than two variables for fitting a plane to data is obtained by minimizing the sum of a function of the volumes obtained by drawing, from each data point, lines parallel to each coordinate axis to the fitted plane (Draper and Yang 1997; Goodman and Tofallis 2003). Generalized RMA results for the multivariate case obtained by Draper and Yang (1997) are reviewed and some investigations of multivariate RMA are given. A linear model is proposed that does not specify a dependent variable and allows for errors in the measurement of each variable. Coefficients in the model are estimated by minimization of the function of the volumes previously mentioned. Methods for obtaining coefficient estimates are discussed and simulations are used to investigate the distribution of coefficient estimates. The effects of sample size, sampling error and correlation among variables on the estimates are studied. Bootstrap methods are used to obtain confidence intervals for model coefficients. Residual analysis is considered for assessing model assumptions. Outlier and influential case diagnostics are developed and a forward selection method is proposed for subset selection of model variables. A real data example is provided that uses the methods developed. Topics for further research are discussed.
ContributorsLi, Jingjin (Author) / Young, Dennis (Thesis advisor) / Eubank, Randall (Thesis advisor) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Yang, Yan (Committee member) / Arizona State University (Publisher)
Created2012