Matching Items (28)

Filtering by

Clear all filters

134937-Thumbnail Image.png

The Value Added of the ASU Spirit Squad to Sun Devil Athletics

Description

Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has

Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not given the appropriate recognition nor credit for the amount of work they do. This contribution is sometimes in question as it depends on the school and the sports teams. The benefits are believed to vary based on the university or professional teams. This research investigated how collegiate cheerleaders and dancers add value to the university sport experience. We interviewed key personnel at the university and conference level and polled spectators at sporting events such as basketball and football. We found that the university administration and athletic personnel see the ASU Spirit Squad as value added but spectators had a totally different perspective. The university acknowledges the added value of the Spirit Squad and its necessity. Spectators attend ASU sporting events to support the university and for the entertainment. They enjoy watching the ASU Spirit Squad perform but would continue to attend ASU sporting events even if cheerleaders and dancers were not there.

Contributors

Created

Date Created
2017-05

149829-Thumbnail Image.png

Generalized statistical tolerance analysis and three dimensional model for manufacturing tolerance transfer in manufacturing process planning

Description

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research, a new three dimensional model for tolerance transfer in manufacturing process planning is presented that is user friendly in the sense that it is built upon the Coordinate Measuring Machine (CMM) readings that are readily available in any decent manufacturing facility. This model can take care of datum reference change between non orthogonal datums (squeezed datums), non-linearly oriented datums (twisted datums) etc. Graph theoretic approach based upon ACIS, C++ and MFC is laid out to facilitate its implementation for automation of the model. A totally new approach to determining dimensions and tolerances for the manufacturing process plan is also presented. Secondly, a new statistical model for the statistical tolerance analysis based upon joint probability distribution of the trivariate normal distributed variables is presented. 4-D probability Maps have been developed in which the probability value of a point in space is represented by the size of the marker and the associated color. Points inside the part map represent the pass percentage for parts manufactured. The effect of refinement with form and orientation tolerance is highlighted by calculating the change in pass percentage with the pass percentage for size tolerance only. Delaunay triangulation and ray tracing algorithms have been used to automate the process of identifying the points inside and outside the part map. Proof of concept software has been implemented to demonstrate this model and to determine pass percentages for various cases. The model is further extended to assemblies by employing convolution algorithms on two trivariate statistical distributions to arrive at the statistical distribution of the assembly. Map generated by using Minkowski Sum techniques on the individual part maps is superimposed on the probability point cloud resulting from convolution. Delaunay triangulation and ray tracing algorithms are employed to determine the assembleability percentages for the assembly.

Contributors

Agent

Created

Date Created
2011

151976-Thumbnail Image.png

Testing independence of parallel pseudorandom number streams: incorporating the data's multivariate nature

Description

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.

Contributors

Agent

Created

Date Created
2013

152223-Thumbnail Image.png

Optimal experimental design for accelerated life testing and design evaluation

Description

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has been done in the ALT area and optimal design for ALT is a major topic. This dissertation consists of three main studies. First, a methodology of finding optimal design for ALT with right censoring and interval censoring have been developed and it employs the proportional hazard (PH) model and generalized linear model (GLM) to simplify the computational process. A sensitivity study is also given to show the effects brought by parameters to the designs. Second, an extended version of I-optimal design for ALT is discussed and then a dual-objective design criterion is defined and showed with several examples. Also in order to evaluate different candidate designs, several graphical tools are developed. Finally, when there are more than one models available, different model checking designs are discussed.

Contributors

Agent

Created

Date Created
2013

152189-Thumbnail Image.png

Alternative methods via random forest to identify interactions in a general framework and variable importance in the context of value-added models

Description

This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement.

This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’ test scores as outcome variables and teachers’ contributions as random effects to ascribe changes in student performance to the teachers who have taught them. The VAMs teacher score is the empirical best linear unbiased predictor (EBLUP). This approach is limited by the adequacy of the assumed model specification with respect to the unknown underlying model. In that regard, this study proposes alternative ways to rank teacher effects that are not dependent on a given model by introducing two variable importance measures (VIMs), the node-proportion and the covariate-proportion. These VIMs are novel because they take into account the final configuration of the terminal nodes in the constitutive trees in a random forest. In a simulation study, under a variety of conditions, true rankings of teacher effects are compared with estimated rankings obtained using three sources: the newly proposed VIMs, existing VIMs, and EBLUPs from the assumed linear model specification. The newly proposed VIMs outperform all others in various scenarios where the model was misspecified. The second study develops two novel interaction measures. These measures could be used within but are not restricted to the VAM framework. The distribution-based measure is constructed to identify interactions in a general setting where a model specification is not assumed in advance. In turn, the mean-based measure is built to estimate interactions when the model specification is assumed to be linear. Both measures are unique in their construction; they take into account not only the outcome values, but also the internal structure of the trees in a random forest. In a separate simulation study, under a variety of conditions, the proposed measures are found to identify and estimate second-order interactions.

Contributors

Agent

Created

Date Created
2013

151128-Thumbnail Image.png

Some topics concerning the singular value decomposition and generalized singular value decomposition

Description

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection in the case of nonnormal data and (iii) formulation of a partial canonical correlation concept for continuous time stochastic processes. The finite dimensional SVD has an infinite dimensional generalization to compact operators. However, the form of the finite dimensional GSVD developed in, e.g., Van Loan does not extend directly to infinite dimensions as a result of a key step in the proof that is specific to the matrix case. Thus, the first problem of interest is to find an infinite dimensional version of the GSVD. One such GSVE for compact operators on separable Hilbert spaces is developed. The second problem concerns regularization parameter estimation. The chi-squared method for nonnormal data is considered. A form of the optimized regularization criterion that pertains to measured data or signals with nonnormal noise is derived. Large sample theory for phi-mixing processes is used to derive a central limit theorem for the chi-squared criterion that holds under certain conditions. Departures from normality are seen to manifest in the need for a possibly different scale factor in normalization rather than what would be used under the assumption of normality. The consequences of our large sample work are illustrated by empirical experiments. For the third problem, a new approach is examined for studying the relationships between a collection of functional random variables. The idea is based on the work of Sunder that provides mappings to connect the elements of algebraic and orthogonal direct sums of subspaces in a Hilbert space. When combined with a key isometry associated with a particular Hilbert space indexed stochastic process, this leads to a useful formulation for situations that involve the study of several second order processes. In particular, using our approach with two processes provides an independent derivation of the functional canonical correlation analysis (CCA) results of Eubank and Hsing. For more than two processes, a rigorous derivation of the functional partial canonical correlation analysis (PCCA) concept that applies to both finite and infinite dimensional settings is obtained.

Contributors

Agent

Created

Date Created
2012

150996-Thumbnail Image.png

Multivariate generalization of reduced major axis regression

Description

A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have

A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis (RMA) regression and is often used instead of Ordinary Least Squares (OLS) regression. Results for confidence intervals, hypothesis testing and asymptotic distributions of coefficient estimates in the bivariate case are reviewed. A generalization of RMA to more than two variables for fitting a plane to data is obtained by minimizing the sum of a function of the volumes obtained by drawing, from each data point, lines parallel to each coordinate axis to the fitted plane (Draper and Yang 1997; Goodman and Tofallis 2003). Generalized RMA results for the multivariate case obtained by Draper and Yang (1997) are reviewed and some investigations of multivariate RMA are given. A linear model is proposed that does not specify a dependent variable and allows for errors in the measurement of each variable. Coefficients in the model are estimated by minimization of the function of the volumes previously mentioned. Methods for obtaining coefficient estimates are discussed and simulations are used to investigate the distribution of coefficient estimates. The effects of sample size, sampling error and correlation among variables on the estimates are studied. Bootstrap methods are used to obtain confidence intervals for model coefficients. Residual analysis is considered for assessing model assumptions. Outlier and influential case diagnostics are developed and a forward selection method is proposed for subset selection of model variables. A real data example is provided that uses the methods developed. Topics for further research are discussed.

Contributors

Agent

Created

Date Created
2012

149613-Thumbnail Image.png

Semiconductor yield modeling using generalized linear models

Description

Yield is a key process performance characteristic in the capital-intensive semiconductor fabrication process. In an industry where machines cost millions of dollars and cycle times are a number of months, predicting and optimizing yield are critical to process improvement,

Yield is a key process performance characteristic in the capital-intensive semiconductor fabrication process. In an industry where machines cost millions of dollars and cycle times are a number of months, predicting and optimizing yield are critical to process improvement, customer satisfaction, and financial success. Semiconductor yield modeling is essential to identifying processing issues, improving quality, and meeting customer demand in the industry. However, the complicated fabrication process, the massive amount of data collected, and the number of models available make yield modeling a complex and challenging task. This work presents modeling strategies to forecast yield using generalized linear models (GLMs) based on defect metrology data. The research is divided into three main parts. First, the data integration and aggregation necessary for model building are described, and GLMs are constructed for yield forecasting. This technique yields results at both the die and the wafer levels, outperforms existing models found in the literature based on prediction errors, and identifies significant factors that can drive process improvement. This method also allows the nested structure of the process to be considered in the model, improving predictive capabilities and violating fewer assumptions. To account for the random sampling typically used in fabrication, the work is extended by using generalized linear mixed models (GLMMs) and a larger dataset to show the differences between batch-specific and population-averaged models in this application and how they compare to GLMs. These results show some additional improvements in forecasting abilities under certain conditions and show the differences between the significant effects identified in the GLM and GLMM models. The effects of link functions and sample size are also examined at the die and wafer levels. The third part of this research describes a methodology for integrating classification and regression trees (CART) with GLMs. This technique uses the terminal nodes identified in the classification tree to add predictors to a GLM. This method enables the model to consider important interaction terms in a simpler way than with the GLM alone, and provides valuable insight into the fabrication process through the combination of the tree structure and the statistical analysis of the GLM.

Contributors

Agent

Created

Date Created
2011

149476-Thumbnail Image.png

Mixture-process variable design experiments with control and noise variables within a split-plot structure

Description

In mixture-process variable experiments, it is common that the number of runs is greater than in mixture-only or process-variable experiments. These experiments have to estimate the parameters from the mixture components, process variables, and interactions of both variables. In some

In mixture-process variable experiments, it is common that the number of runs is greater than in mixture-only or process-variable experiments. These experiments have to estimate the parameters from the mixture components, process variables, and interactions of both variables. In some of these experiments there are variables that are hard to change or cannot be controlled under normal operating conditions. These situations often prohibit a complete randomization for the experimental runs due to practical and economical considerations. Furthermore, the process variables can be categorized into two types: variables that are controllable and directly affect the response, and variables that are uncontrollable and primarily affect the variability of the response. These uncontrollable variables are called noise factors and assumed controllable in a laboratory environment for the purpose of conducting experiments. The model containing both noise variables and control factors can be used to determine factor settings for the control factor that makes the response "robust" to the variability transmitted from the noise factors. These types of experiments can be analyzed in a model for the mean response and a model for the slope of the response within a split-plot structure. When considering the experimental designs, low prediction variances for the mean and slope model are desirable. The methods for the mixture-process variable designs with noise variables considering a restricted randomization are demonstrated and some mixture-process variable designs that are robust to the coefficients of interaction with noise variables are evaluated using fraction design space plots with the respect to the prediction variance properties. Finally, the G-optimal design that minimizes the maximum prediction variance over the entire design region is created using a genetic algorithm.

Contributors

Agent

Created

Date Created
2010

149443-Thumbnail Image.png

Public health surveillance in high-dimensions with supervised learning

Description

Public health surveillance is a special case of the general problem where counts (or rates) of events are monitored for changes. Modern data complements event counts with many additional measurements (such as geographic, demographic, and others) that comprise high-dimensional covariates.

Public health surveillance is a special case of the general problem where counts (or rates) of events are monitored for changes. Modern data complements event counts with many additional measurements (such as geographic, demographic, and others) that comprise high-dimensional covariates. This leads to an important challenge to detect a change that only occurs within a region, initially unspecified, defined by these covariates. Current methods are typically limited to spatial and/or temporal covariate information and often fail to use all the information available in modern data that can be paramount in unveiling these subtle changes. Additional complexities associated with modern health data that are often not accounted for by traditional methods include: covariates of mixed type, missing values, and high-order interactions among covariates. This work proposes a transform of public health surveillance to supervised learning, so that an appropriate learner can inherently address all the complexities described previously. At the same time, quantitative measures from the learner can be used to define signal criteria to detect changes in rates of events. A Feature Selection (FS) method is used to identify covariates that contribute to a model and to generate a signal. A measure of statistical significance is included to control false alarms. An alternative Percentile method identifies the specific cases that lead to changes using class probability estimates from tree-based ensembles. This second method is intended to be less computationally intensive and significantly simpler to implement. Finally, a third method labeled Rule-Based Feature Value Selection (RBFVS) is proposed for identifying the specific regions in high-dimensional space where the changes are occurring. Results on simulated examples are used to compare the FS method and the Percentile method. Note this work emphasizes the application of the proposed methods on public health surveillance. Nonetheless, these methods can easily be extended to a variety of applications where counts (or rates) of events are monitored for changes. Such problems commonly occur in domains such as manufacturing, economics, environmental systems, engineering, as well as in public health.

Contributors

Agent

Created

Date Created
2010