Matching Items (3)
Filtering by

Clear all filters

149971-Thumbnail Image.png
Description
Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful cross-group comparisons, failure to attend to possible sources of latent class heterogeneity in the form of class-based differences in factor structure has the potential to compromise conclusions with respect to observed groups and may result in misguided attempts at instrument development and theory refinement. The present studies examined the sensitivity of two widely used confirmatory factor analytic model fit indices, the chi-square test of model fit and RMSEA, to latent class differences in factor structure. Two primary questions were addressed. The first of these concerned the impact of latent class differences in factor loadings with respect to model fit in a single sample reflecting a mixture of classes. The second question concerned the impact of latent class differences in configural structure on tests of factorial invariance across observed groups. The results suggest that both indices are highly insensitive to class-based differences in factor loadings. Across sample size conditions, models with medium (0.2) sized loading differences were rejected by the chi-square test of model fit at rates just slightly higher than the nominal .05 rate of rejection that would be expected under a true null hypothesis. While rates of rejection increased somewhat when the magnitude of loading difference increased, even the largest sample size with equal class representation and the most extreme violations of loading invariance only had rejection rates of approximately 60%. RMSEA was also insensitive to class-based differences in factor loadings, with mean values across conditions suggesting a degree of fit that would generally be regarded as exceptionally good in practice. In contrast, both indices were sensitive to class-based differences in configural structure in the context of a multiple group analysis in which each observed group was a mixture of classes. However, preliminary evidence suggests that this sensitivity may contingent on the form of the cross-group model misspecification.
ContributorsBlackwell, Kimberly Carol (Author) / Millsap, Roger E (Thesis advisor) / Aiken, Leona S. (Committee member) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2011
150618-Thumbnail Image.png
Description
Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.
ContributorsCoxe, Stefany (Author) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2012
154088-Thumbnail Image.png
Description
Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand

Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand mean centered (CGM) level-1 predictors in two-level models contain two sources of variability (i.e., within-cluster variability and between-cluster variability), interactions involving RAS or CGM level-1 predictors also contain more than one source of variability. In this Master’s thesis, I use simulations to demonstrate that ignoring the four sources of variability in a total level-1 interaction effect can lead to erroneous conclusions. I explain how to parse a total level-1 interaction effect into four specific interaction effects, derive equivalencies between CGM and centering within context (CWC) for this model, and describe how the interpretations of the fixed effects change under CGM and CWC. Finally, I provide an empirical example using diary data collected from working adults with chronic pain.
ContributorsMazza, Gina L (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015