Matching Items (15)
Filtering by

Clear all filters

153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS)

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
ContributorsMistler, Stephen (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona (Committee member) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
150618-Thumbnail Image.png
Description
Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.
ContributorsCoxe, Stefany (Author) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2012
154088-Thumbnail Image.png
Description
Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand

Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand mean centered (CGM) level-1 predictors in two-level models contain two sources of variability (i.e., within-cluster variability and between-cluster variability), interactions involving RAS or CGM level-1 predictors also contain more than one source of variability. In this Master’s thesis, I use simulations to demonstrate that ignoring the four sources of variability in a total level-1 interaction effect can lead to erroneous conclusions. I explain how to parse a total level-1 interaction effect into four specific interaction effects, derive equivalencies between CGM and centering within context (CWC) for this model, and describe how the interpretations of the fixed effects change under CGM and CWC. Finally, I provide an empirical example using diary data collected from working adults with chronic pain.
ContributorsMazza, Gina L (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
156112-Thumbnail Image.png
Description
Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a

Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a partial dose due to nonadherence. Using these data, we can estimate the magnitude of the treatment effect at different levels of adherence, which serve as a proxy for different levels of treatment. In this dissertation, I conducted Monte Carlo simulations to evaluate when linear dose-response effects can be accurately and precisely estimated in randomized experiments comparing a no-treatment control condition to a treatment condition with partial adherence. Specifically, I evaluated the performance of confounder adjustment and instrumental variable methods when their assumptions were met (Study 1) and when their assumptions were violated (Study 2). In Study 1, the confounder adjustment and instrumental variable methods provided unbiased estimates of the dose-response effect across sample sizes (200, 500, 2,000) and adherence distributions (uniform, right skewed, left skewed). The adherence distribution affected power for the instrumental variable method. In Study 2, the confounder adjustment method provided unbiased or minimally biased estimates of the dose-response effect under no or weak (but not moderate or strong) unobserved confounding. The instrumental variable method provided extremely biased estimates of the dose-response effect under violations of the exclusion restriction (no direct effect of treatment assignment on the outcome), though less severe violations of the exclusion restriction should be investigated.
ContributorsMazza, Gina L (Author) / Grimm, Kevin J. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156631-Thumbnail Image.png
Description
Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions using the potential outcomes framework (Holland, 1988; MacKinnon, 2008; Robins & Greenland, 1992; VanderWeele, 2015), using longitudinal data to determine the temporal order of M and Y (MacKinnon, 2008), or both. The goals of this dissertation were to (1) define all indirect and direct effects in a three-wave longitudinal mediation model using the causal mediation formula (Pearl, 2012), (2) analytically compare traditional estimators (ANCOVA, difference score, and residualized change score) to the potential outcomes-defined indirect effects, and (3) use a Monte Carlo simulation to compare the performance of regression and potential outcomes-based methods for estimating longitudinal indirect effects and apply the methods to an empirical dataset. The results of the causal mediation formula revealed the potential outcomes definitions of indirect effects are equivalent to the product of coefficient estimators in a three-wave longitudinal mediation model with linear and additive relations. It was demonstrated with analytical comparisons that the ANCOVA, difference score, and residualized change score models’ estimates of two time-specific indirect effects differ as a function of the respective mediator-outcome relations at each time point. The traditional model that performed the best in terms of the evaluation criteria in the Monte Carlo study was the ANCOVA model and the potential outcomes model that performed the best in terms of the evaluation criteria was sequential G-estimation. Implications and future directions are discussed.
ContributorsValente, Matthew J (Author) / Mackinnon, David P (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Keving (Committee member) / Chassin, Laurie (Committee member) / Arizona State University (Publisher)
Created2018
154939-Thumbnail Image.png
Description
The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been explicated mostly for cross-sectional data, but they can also be applied to longitudinal data where level-1 effects represent within-person relations and level-2 effects represent between-person relations. With longitudinal data, estimating the contextual effect allows direct evaluation of whether between-person and within-person effects differ. Furthermore, these models, unlike single-level models, permit individual differences by allowing within-person slopes to vary across individuals. This study examined the statistical performance of the contextual model with a random slope for longitudinal within-person fluctuation data.

A Monte Carlo simulation was used to generate data based on the contextual multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the predictor variable were varied. The effects of simulation factors on parameter bias, parameter variability, and standard error accuracy were assessed. Parameter estimates were in general unbiased. Power to detect the slope variance and contextual effect was over 80% for most conditions, except some of the smaller sample size conditions. Type I error rates for the contextual effect were also high for some of the smaller sample size conditions. Conclusions and future directions are discussed.
ContributorsWurpts, Ingrid Carlson (Author) / Mackinnon, David P (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Kevin J. (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2016
155855-Thumbnail Image.png
Description
Time-to-event analysis or equivalently, survival analysis deals with two variables simultaneously: when (time information) an event occurs and whether an event occurrence is observed or not during the observation period (censoring information). In behavioral and social sciences, the event of interest usually does not lead to a terminal state

Time-to-event analysis or equivalently, survival analysis deals with two variables simultaneously: when (time information) an event occurs and whether an event occurrence is observed or not during the observation period (censoring information). In behavioral and social sciences, the event of interest usually does not lead to a terminal state such as death. Other outcomes after the event can be collected and thus, the survival variable can be considered as a predictor as well as an outcome in a study. One example of a case where the survival variable serves as a predictor as well as an outcome is a survival-mediator model. In a single survival-mediator model an independent variable, X predicts a survival variable, M which in turn, predicts a continuous outcome, Y. The survival-mediator model consists of two regression equations: X predicting M (M-regression), and M and X simultaneously predicting Y (Y-regression). To estimate the regression coefficients of the survival-mediator model, Cox regression is used for the M-regression. Ordinary least squares regression is used for the Y-regression using complete case analysis assuming censored data in M are missing completely at random so that the Y-regression is unbiased. In this dissertation research, different measures for the indirect effect were proposed and a simulation study was conducted to compare performance of different indirect effect test methods. Bias-corrected bootstrapping produced high Type I error rates as well as low parameter coverage rates in some conditions. In contrast, the Sobel test produced low Type I error rates as well as high parameter coverage rates in some conditions. The bootstrap of the natural indirect effect produced low Type I error and low statistical power when the censoring proportion was non-zero. Percentile bootstrapping, distribution of the product and the joint-significance test showed best performance. Statistical analysis of the survival-mediator model is discussed. Two indirect effect measures, the ab-product and the natural indirect effect are compared and discussed. Limitations and future directions of the simulation study are discussed. Last, interpretation of the survival-mediator model for a made-up empirical data set is provided to clarify the meaning of the quantities in the survival-mediator model.
ContributorsKim, Han Joe (Author) / Mackinnon, David P. (Thesis advisor) / Tein, Jenn-Yun (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2017
155670-Thumbnail Image.png
Description
Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model

Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model with latent variables in the Bayesian framework with various accurate and inaccurate priors for structural and measurement model parameters has yet to be evaluated in a statistical simulation. This dissertation outlines the steps in the estimation of a single mediator model with latent variables as a Bayesian structural equation model (SEM). A Monte Carlo study is carried out in order to examine the statistical properties of point and interval summaries for the mediated effect in the Bayesian latent variable single mediator model with prior distributions with varying degrees of accuracy and informativeness. Bayesian methods with diffuse priors have equally good statistical properties as Maximum Likelihood (ML) and the distribution of the product. With accurate informative priors Bayesian methods can increase power up to 25% and decrease interval width up to 24%. With inaccurate informative priors the point summaries of the mediated effect are more biased than ML estimates, and the bias is higher if the inaccuracy occurs in priors for structural parameters than in priors for measurement model parameters. Findings from the Monte Carlo study are generalizable to Bayesian analyses with priors of the same distributional forms that have comparable amounts of (in)accuracy and informativeness to priors evaluated in the Monte Carlo study.
ContributorsMiočević, Milica (Author) / Mackinnon, David P. (Thesis advisor) / Levy, Roy (Thesis advisor) / Grimm, Kevin (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2017
149409-Thumbnail Image.png
Description
Mediation analysis is a statistical approach that examines the effect of a treatment (e.g., prevention program) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variables (e.g., peer drug use norms). The increased use of prevention intervention programs with outcomes measured at multiple time

Mediation analysis is a statistical approach that examines the effect of a treatment (e.g., prevention program) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variables (e.g., peer drug use norms). The increased use of prevention intervention programs with outcomes measured at multiple time points following the intervention requires multilevel modeling techniques to account for clustering in the data. Estimating multilevel mediation models, in which all the variables are measured at individual level (Level 1), poses several challenges to researchers. The first challenge is to conceptualize a multilevel mediation model by clarifying the underlying statistical assumptions and implications of those assumptions on cluster-level (Level-2) covariance structure. A second challenge is that variables measured at Level 1 potentially contain both between- and within-cluster variation making interpretation of multilevel analysis difficult. As a result, multilevel mediation analyses may yield coefficient estimates that are composites of coefficient estimates at different levels if proper centering is not used. This dissertation addresses these two challenges. Study 1 discusses the concept of a correctly specified multilevel mediation model by examining the underlying statistical assumptions and implication of those assumptions on Level-2 covariance structure. Further, Study 1 presents analytical results showing algebraic relationships between the population parameters in a correctly specified multilevel mediation model. Study 2 extends previous work on centering in multilevel mediation analysis. First, different centering methods in multilevel analysis including centering within cluster with the cluster mean as a Level-2 predictor of intercept (CWC2) are discussed. Next, application of the CWC2 strategy to accommodate multilevel mediation models is explained. It is shown that the CWC2 centering strategy separates the between- and within-cluster mediated effects. Next, Study 2 discusses assumptions underlying a correctly specified CWC2 multilevel mediation model and defines between- and within-cluster mediated effects. In addition, analytical results for the algebraic relationships between the population parameters in a CWC2 multilevel mediation model are presented. Finally, Study 2 shows results of a simulation study conducted to verify derived algebraic relationships empirically.
ContributorsTofighi, Davood (Author) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Thesis advisor) / Enders, Craig C (Committee member) / Millsap, Roger E (Committee member) / Arizona State University (Publisher)
Created2010
187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
ContributorsHerren, Andrew (Author) / Hahn, P Richard (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lopes, Hedibert (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2023