Matching Items (29)
Filtering by

Clear all filters

Description

This project tackles a real-world example of a classroom with college students to discover what factors affect a student’s outcome in the class as well as investigate when and why a student who started well in the semester may end poorly later on. First, this project performs a statistical analysis

This project tackles a real-world example of a classroom with college students to discover what factors affect a student’s outcome in the class as well as investigate when and why a student who started well in the semester may end poorly later on. First, this project performs a statistical analysis to ensure that the total score of a student is truly based on the factors given in the dataset instead of due to random chance. Next, factors that are the most significant in affecting the outcome of scores in zyBook assignments are discovered. Thirdly, visualization of how students perform over time is displayed for the student body as a whole and students who started well at the beginning of the semester but trailed off towards the end. Lastly, the project also gives insight into the failure metrics for good starter students who unfortunately did not perform as well later in the course.

ContributorsChung, Michael (Author) / Meuth, Ryan (Thesis director) / Samara, Marko (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
This review explores popular gambling strategies often believed to guarantee wins, such as card counting and taking advantage of arbitrage. We present a mathematical overview of these systems to evaluate their theoretical effectiveness in ideal conditions by presenting prior research and mathematical proofs. This paper then generates results from these

This review explores popular gambling strategies often believed to guarantee wins, such as card counting and taking advantage of arbitrage. We present a mathematical overview of these systems to evaluate their theoretical effectiveness in ideal conditions by presenting prior research and mathematical proofs. This paper then generates results from these models using Monte Carlo simulations and compares them to data from real-world scenarios. Additionally, we examine reasons that might explain the discrepancies between theoretical and real-world results, such as the potential for dealers to detect and counteract card counting. Ultimately, although these strategies may fare well in theoretical scenarios, they struggle to create long-term winning solutions in casino or online gambling settings.
ContributorsBoyilla, Harsha (Author) / Clough, Michael (Thesis director) / Eikenberry, Steffen (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
132394-Thumbnail Image.png
Description
In baseball, a starting pitcher has historically been a more durable pitcher capable of lasting long into games without tiring. For the entire history of Major League Baseball, these pitchers have been expected to last 6 innings or more into a game before being replaced. However, with the advances in

In baseball, a starting pitcher has historically been a more durable pitcher capable of lasting long into games without tiring. For the entire history of Major League Baseball, these pitchers have been expected to last 6 innings or more into a game before being replaced. However, with the advances in statistics and sabermetrics and their gradual acceptance by professional coaches, the role of the starting pitcher is beginning to change. Teams are experimenting with having starters being replaced quicker, challenging the traditional role of the starting pitcher. The goal of this study is to determine if there is an exact point at which a team would benefit from replacing a starting or relief pitcher with another pitcher using statistical analyses. We will use logistic stepwise regression to predict the likelihood of a team scoring a run if a substitution is made or not made given the current game situation.
ContributorsBuckley, Nicholas J (Author) / Samara, Marko (Thesis director) / Lanchier, Nicolas (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165712-Thumbnail Image.png
Description

In the basketball world, perhaps one of the most sought-after feelings is that of momentum. Basketball players, coaches, analysts, and fans alike are all too familiar with the idea that a “team has momentum” during a stretch of time, or that the team needs to do something to “generate their

In the basketball world, perhaps one of the most sought-after feelings is that of momentum. Basketball players, coaches, analysts, and fans alike are all too familiar with the idea that a “team has momentum” during a stretch of time, or that the team needs to do something to “generate their own momentum”. In a game that appears to be an accumulation of independent possessions, what exactly does momentum really mean? My goal was to see if there is a way to quantify momentum in an NBA game, particularly by looking at the Phoenix Suns 2021-2022 NBA season.

ContributorsRao, Ansh (Author) / Schneider, Laurence (Thesis director) / McIntosh, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Information Systems (Contributor)
Created2022-05
Description
College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents.

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents. While this may sound nefarious, the vast amounts of data about these games and student-athletes can be used to glean insights about the sports themselves in order to help student-athletes be more successful. Data analytics can be used to make sense of the available data by creating models and using other tools available that can predict how student-athletes and their teams will do in the future based on the data gathered from how they have performed in the past. Colleges and universities across the country compete in a vast array of sports. As a result of these differences, the sports with the largest amounts of data available will be the more popular college sports, such as football, men’s and women’s basketball, baseball and softball. Arizona State University, as a member of the Pac-12 conference, has a storied athletic tradition and decades of history in all of these sports, providing a large amount of data that can be used to analyze student-athlete success in these sports and help predict future success. However, data is available from numerous other college athletic programs that could provide a much larger sample to help predict with greater accuracy why certain teams and student-athletes are more successful than others. The explosion of analytics across the sports world has resulted in a new focus on utilizing statistical techniques to improve all aspects of different sports. Sports science has influenced medical departments, and model-building has been used to determine optimal in-game strategy and predict the outcomes of future games based on team strength. It is this latter approach that has become the focus of this paper, with football being used as a subject due to its vast popularity and massive supply of easily accessible data.
Created2022-05
164185-Thumbnail Image.png
Description

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents.

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents. While this may sound nefarious, the vast amounts of data about these games and student-athletes can be used to glean insights about the sports themselves in order to help student-athletes be more successful. Data analytics can be used to make sense of the available data by creating models and using other tools available that can predict how student-athletes and their teams will do in the future based on the data gathered from how they have performed in the past. Colleges and universities across the country compete in a vast array of sports. As a result of these differences, the sports with the largest amounts of data available will be the more popular college sports, such as football, men’s and women’s basketball, baseball and softball. Arizona State University, as a member of the Pac-12 conference, has a storied athletic tradition and decades of history in all of these sports, providing a large amount of data that can be used to analyze student-athlete success in these sports and help predict future success. However, data is available from numerous other college athletic programs that could provide a much larger sample to help predict with greater accuracy why certain teams and student-athletes are more successful than others. The explosion of analytics across the sports world has resulted in a new focus on utilizing statistical techniques to improve all aspects of different sports. Sports science has influenced medical departments, and model-building has been used to determine optimal in-game strategy and predict the outcomes of future games based on team strength. It is this latter approach that has become the focus of this paper, with football being used as a subject due to its vast popularity and massive supply of easily accessible data.

ContributorsLindstrom, Trent (Author) / Schneider, Laurence (Thesis director) / Wilson, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
164186-Thumbnail Image.png
Description

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents.

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents. While this may sound nefarious, the vast amounts of data about these games and student-athletes can be used to glean insights about the sports themselves in order to help student-athletes be more successful. Data analytics can be used to make sense of the available data by creating models and using other tools available that can predict how student-athletes and their teams will do in the future based on the data gathered from how they have performed in the past. Colleges and universities across the country compete in a vast array of sports. As a result of these differences, the sports with the largest amounts of data available will be the more popular college sports, such as football, men’s and women’s basketball, baseball and softball. Arizona State University, as a member of the Pac-12 conference, has a storied athletic tradition and decades of history in all of these sports, providing a large amount of data that can be used to analyze student-athlete success in these sports and help predict future success. However, data is available from numerous other college athletic programs that could provide a much larger sample to help predict with greater accuracy why certain teams and student-athletes are more successful than others. The explosion of analytics across the sports world has resulted in a new focus on utilizing statistical techniques to improve all aspects of different sports. Sports science has influenced medical departments, and model-building has been used to determine optimal in-game strategy and predict the outcomes of future games based on team strength. It is this latter approach that has become the focus of this paper, with football being used as a subject due to its vast popularity and massive supply of easily accessible data.

ContributorsLindstrom, Trent (Author) / Schneider, Laurence (Thesis director) / Wilson, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

Visualizations can be an incredibly powerful tool for communicating data. Data visualizations can summarize large data sets into one view, allow for easy comparisons between variables, and show trends or relationships in data that cannot be seen by looking at the raw data. Empirical information and by extension data visualizations

Visualizations can be an incredibly powerful tool for communicating data. Data visualizations can summarize large data sets into one view, allow for easy comparisons between variables, and show trends or relationships in data that cannot be seen by looking at the raw data. Empirical information and by extension data visualizations are often seen as objective and honest. Unfortunately, data visualizations are susceptible to errors that may make them misleading. When visualizations are made for public audiences that do not have the statistical training or subject matter expertise to identify misleading or misrepresented data, these errors can have very negative effects. There is a good deal of research on how best to create guidelines for creating or systems for evaluating data visualizations. Many of the existing guidelines have contradicting approaches to designing visuals or they stress that best practices depend on the context. The goal of this work is to define the guidelines for making visualizations in the context of a public audience and show how context-specific guidelines can be used to effectively evaluate and critique visualizations. The guidelines created here are a starting point to show that there is a need for best practices that are specific to public media. Data visualization for the public lies at the intersection of statistics, graphic design, journalism, cognitive science, and rhetoric. Because of this, future conversations to create guidelines should include representatives of all these fields.

ContributorsSteele, Kayleigh (Author) / Martin, Thomas (Thesis director) / Woodall, Gina (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2023-05