Matching Items (40)
Filtering by

Clear all filters

151992-Thumbnail Image.png
Description
Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools;

Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools; see e.g., Froelich & Habing, 2007). It remains to be seen how such procedures perform in the context of small-scale assessments characterized by relatively small sample sizes and/or short tests. The fact that some procedures come with minimum allowable values for characteristics of the data, such as the number of items, may even render them unusable for some small-scale assessments. Other measures designed to assess dimensionality do not come with such limitations and, as such, may perform better under conditions that do not lend themselves to evaluation via statistics that rely on asymptotic theory. The current work aimed to evaluate the performance of one such metric, the standardized generalized dimensionality discrepancy measure (SGDDM; Levy & Svetina, 2011; Levy, Xu, Yel, & Svetina, 2012), under both large- and small-scale testing conditions. A Monte Carlo study was conducted to compare the performance of DIMTEST and the SGDDM statistic in terms of evaluating assumptions of unidimensionality in item response data under a variety of conditions, with an emphasis on the examination of these procedures in small-scale assessments. Similar to previous research, increases in either test length or sample size resulted in increased power. The DIMTEST procedure appeared to be a conservative test of the null hypothesis of unidimensionality. The SGDDM statistic exhibited rejection rates near the nominal rate of .05 under unidimensional conditions, though the reliability of these results may have been less than optimal due to high sampling variability resulting from a relatively limited number of replications. Power values were at or near 1.0 for many of the multidimensional conditions. It was only when the sample size was reduced to N = 100 that the two approaches diverged in performance. Results suggested that both procedures may be appropriate for sample sizes as low as N = 250 and tests as short as J = 12 (SGDDM) or J = 19 (DIMTEST). When used as a diagnostic tool, SGDDM may be appropriate with as few as N = 100 cases combined with J = 12 items. The study was somewhat limited in that it did not include any complex factorial designs, nor were the strength of item discrimination parameters or correlation between factors manipulated. It is recommended that further research be conducted with the inclusion of these factors, as well as an increase in the number of replications when using the SGDDM procedure.
ContributorsReichenberg, Ray E (Author) / Levy, Roy (Thesis advisor) / Thompson, Marilyn S. (Thesis advisor) / Green, Samuel B. (Committee member) / Arizona State University (Publisher)
Created2013
152477-Thumbnail Image.png
Description
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation

This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by proportions of replications in which the PPP-values were extreme. An effect size measure for PPMC was introduced as a supplemental numerical summary to the PPP-value. Consistent with previous PPMC research, all investigated fit functions tended to perform conservatively, but Standardized Generalized Dimensionality Discrepancy Measure (SGDDM), Yen's Q3, and Hierarchy Consistency Index (HCI) only mildly so. Adequate power to detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, Item Consistency Index (ICI), and to a lesser extent Deviance, while proportion correct (PC), a chi-square-type item-fit measure, Ranked Probability Score (RPS), and Good's Logarithmic Scale (GLS) were powerless across all investigated factors. Bivariate SGDDM and Q3 were found to provide powerful and detailed feedback for all investigated types of misfit.
ContributorsCrawford, Aaron (Author) / Levy, Roy (Thesis advisor) / Green, Samuel (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2014
153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS)

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
ContributorsMistler, Stephen (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona (Committee member) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
153357-Thumbnail Image.png
Description
Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational researchers reared in a frequentist perspective into the realms of

Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational researchers reared in a frequentist perspective into the realms of Bayesian analysis and educational data mining. The current study aimed to address this by providing a model-building process for developing a Bayesian network (BN) that leveraged educational data mining, Bayesian analysis, and traditional iterative model-building techniques in order to predict whether community college students will stop out at the completion of each of their first six terms. The study utilized exploratory and confirmatory techniques to reduce an initial pool of more than 50 potential predictor variables to a parsimonious final BN with only four predictor variables. The average in-sample classification accuracy rate for the model was 80% (Cohen's κ = 53%). The model was shown to be generalizable across samples with an average out-of-sample classification accuracy rate of 78% (Cohen's κ = 49%). The classification rates for the BN were also found to be superior to the classification rates produced by an analog frequentist discrete-time survival analysis model.
ContributorsArcuria, Philip (Author) / Levy, Roy (Thesis advisor) / Green, Samuel B (Committee member) / Thompson, Marilyn S (Committee member) / Arizona State University (Publisher)
Created2015
156621-Thumbnail Image.png
Description
Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline models, the bifactor models fit data well and had minimal bias in latent mean estimation. However, the low convergence rates of fitting bifactor models to data with complex structures and small sample sizes caused concern. On the other hand, effects of fitting the misspecified single-factor models on the assessments of MI and latent means differed by the bifactor structures underlying data. For data following one general factor and one group factor affecting a small set of indicators, the effects of ignoring the group factor in analysis models on the tests of MI and latent mean differences were mild. In contrast, for data following one general factor and several group factors, oversimplifications of analysis models can lead to inaccurate conclusions regarding MI assessment and latent mean estimation.
ContributorsXu, Yuning (Author) / Green, Samuel (Thesis advisor) / Levy, Roy (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2018
157145-Thumbnail Image.png
Description
A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and

A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and the size of specific factor loadings; in data analysis, misspecification conditions were introduced in which the generated bifactor data were fit using a unidimensional model, and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of latent mean difference for the general factor, the type of item parameters that had DIF, and the magnitude of DIF; the data analysis conditions varied in whether or not setting equality constraints on the noninvariant item parameters.

Results showed that falsely fitting bifactor data using unidimensional models or failing to account for DIF in item parameters resulted in estimation bias in the general factor mean difference, while treating ordinal data as continuous had little influence on the estimation bias as long as there was no severe model misspecification. The extent of estimation bias produced by misspecification of bifactor datasets with unidimensional models was mainly determined by the degree of unidimensionality (i.e., size of specific factor loadings) and the general factor mean difference size. When the DIF was present, the estimation accuracy of the general factor mean difference was completely robust to ignoring noninvariance in specific factor loadings while it was very sensitive to failing to account for DIF in threshold parameters. With respect to ignoring the DIF in general factor loadings, the estimation bias of the general factor mean difference was substantial when the DIF was -0.15, and it can be negligible for smaller sizes of DIF. Despite the impact of model misspecification on estimation accuracy, the power to detect the general factor mean difference was mainly influenced by the sample size and effect size. Serious Type I error rate inflation only occurred when the DIF was present in threshold parameters.
ContributorsLiu, Yixing (Author) / Thompson, Marilyn (Thesis advisor) / Levy, Roy (Committee member) / O’Rourke, Holly (Committee member) / Arizona State University (Publisher)
Created2019
136587-Thumbnail Image.png
Description
In the words of W. Edwards Deming, "the central problem in management and in leadership is failure to understand the information in variation." While many quality management programs propose the institution of technical training in advanced statistical methods, this paper proposes that by understanding the fundamental information behind statistical theory,

In the words of W. Edwards Deming, "the central problem in management and in leadership is failure to understand the information in variation." While many quality management programs propose the institution of technical training in advanced statistical methods, this paper proposes that by understanding the fundamental information behind statistical theory, and by minimizing bias and variance while fully utilizing the available information about the system at hand, one can make valuable, accurate predictions about the future. Combining this knowledge with the work of quality gurus W. E. Deming, Eliyahu Goldratt, and Dean Kashiwagi, a framework for making valuable predictions for continuous improvement is made. After this information is synthesized, it is concluded that the best way to make accurate, informative predictions about the future is to "balance the present and future," seeing the future through the lens of the present and thus minimizing bias, variance, and risk.
ContributorsSynodis, Nicholas Dahn (Author) / Kashiwagi, Dean (Thesis director, Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135858-Thumbnail Image.png
Description
The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic

The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic features of the resulting jump function approximation depends on these lters, known as concentration factors. Recent research showed that that these concentration factors could be designed using aexible iterative framework, improving upon the overall accuracy and robustness of the method, especially in the case where some Fourier data are untrustworthy or altogether missing. Hypothesis testing methods were used to determine how well the original concentration factor method could locate edges using noisy Fourier data. This thesis combines the iterative design aspect of concentration factor design and hypothesis testing by presenting a new algorithm that incorporates multiple concentration factors into one statistical test, which proves more ective at determining jump discontinuities than the previous HT methods. This thesis also examines how the quantity and location of Fourier data act the accuracy of HT methods. Numerical examples are provided.
ContributorsLubold, Shane Michael (Author) / Gelb, Anne (Thesis director) / Cochran, Doug (Committee member) / Viswanathan, Aditya (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136255-Thumbnail Image.png
Description
Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that hel

Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that help predict how much time it takes to implement a cost-saving project. These projects had previously been considered only on the merit of cost savings, but with an added dimension of time, we hope to forecast time according to a number of variables. With such a forecast, we can then apply it to an expense project prioritization model which relates time and cost savings together, compares many different projects simultaneously, and returns a series of present value calculations over different ranges of time. The goal is twofold: assist with an accurate prediction of a project's time to implementation, and provide a basis to compare different projects based on their present values, ultimately helping to reduce the Company's manufacturing costs and improve gross margins. We believe this approach, and the research found toward this goal, is most valuable for the Company. Two coaches from the Company have provided assistance and clarified our questions when necessary throughout our research. In this paper, we begin by defining the problem, setting an objective, and establishing a checklist to monitor our progress. Next, our attention shifts to the data: making observations, trimming the dataset, framing and scoping the variables to be used for the analysis portion of the paper. Before creating a hypothesis, we perform a preliminary statistical analysis of certain individual variables to enrich our variable selection process. After the hypothesis, we run multiple linear regressions with project duration as the dependent variable. After regression analysis and a test for robustness, we shift our focus to an intuitive model based on rules of thumb. We relate these models to an expense project prioritization tool developed using Microsoft Excel software. Our deliverables to the Company come in the form of (1) a rules of thumb intuitive model and (2) an expense project prioritization tool.
ContributorsAl-Assi, Hashim (Co-author) / Chiang, Robert (Co-author) / Liu, Andrew (Co-author) / Ludwick, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05