Matching Items (9)
Filtering by

Clear all filters

136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135858-Thumbnail Image.png
Description
The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic

The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic features of the resulting jump function approximation depends on these lters, known as concentration factors. Recent research showed that that these concentration factors could be designed using aexible iterative framework, improving upon the overall accuracy and robustness of the method, especially in the case where some Fourier data are untrustworthy or altogether missing. Hypothesis testing methods were used to determine how well the original concentration factor method could locate edges using noisy Fourier data. This thesis combines the iterative design aspect of concentration factor design and hypothesis testing by presenting a new algorithm that incorporates multiple concentration factors into one statistical test, which proves more ective at determining jump discontinuities than the previous HT methods. This thesis also examines how the quantity and location of Fourier data act the accuracy of HT methods. Numerical examples are provided.
ContributorsLubold, Shane Michael (Author) / Gelb, Anne (Thesis director) / Cochran, Doug (Committee member) / Viswanathan, Aditya (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133413-Thumbnail Image.png
Description
Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on modeling catastrophes. Setting reserves for catastrophe losses is difficult due to their unpredictable and often long-tailed nature. Determining loss development factors (LDFs) to estimate the ultimate loss amounts for catastrophe events is one method for setting reserves. In an attempt to aid Company XYZ set more accurate reserves, the research conducted focuses on estimating LDFs for catastrophes which have already occurred and have been settled. Furthermore, the research describes the process used to build a linear model in R to estimate LDFs for Company XYZ's closed catastrophe claims from 2001 \u2014 2016. This linear model was used to predict a catastrophe's LDFs based on the age in weeks of the catastrophe during the first year. Back testing was also performed, as was the comparison between the estimated ultimate losses and actual losses. Future research consideration was proposed.
ContributorsSwoverland, Robert Bo (Author) / Milovanovic, Jelena (Thesis director) / Zicarelli, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134603-Thumbnail Image.png
Description
Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league front offices. Executives Billy Beane, Paul DePoedesta, and Theo Epstein are notable figures that have been successful in incorporating sabermetrics

Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league front offices. Executives Billy Beane, Paul DePoedesta, and Theo Epstein are notable figures that have been successful in incorporating sabermetrics to their team's philosophy, resulting in playoff appearances and championship success. The competitive market of baseball, once dominated by the collusion of owners, now promotes innovative thought to analytically develop competitive advantages. The tiered economic payrolls of Major League Baseball (MLB) has created an environment in which large-market teams are capable of "buying" championships through the acquisition of the best available talent in free agency, and small-market teams are pushed to "build" championships through the drafting and systematic farming of high-school and college level players. The use of sabermetrics promotes both models of success \u2014 buying and building \u2014 by unbiasedly determining a player's productivity. The objective of this paper is to develop a regression-based predictive model that can be used by Majors League Baseball teams to forecast the MLB career average offensive performance of college baseball players from specific conferences. The development of this model required multiple tasks: I. Data was obtained from The Baseball Cube, a baseball records database providing both College and MLB data. II. Modifications to the data were applied to adjust for year-to-year formatting, a missing variable for seasons played, the presence of missing values, and to correct league identifiers. III. Evaluation of multiple offensive productivity models capable of handling the obtained dataset and regression forecasting technique. IV. SAS software was used to create the regression models and analyze the residuals for any irregularities or normality violations. The results of this paper find that there is a relationship between Division 1 collegiate baseball conferences and average career offensive productivity in Major Leagues Baseball, with the SEC having the most accurate reflection of performance.
ContributorsBadger, Mathew Bernard (Author) / Goegan, Brian (Thesis director) / Eaton, John (Committee member) / Department of Economics (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134418-Thumbnail Image.png
Description
We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and

We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and build this index using data from the 2014 American Community Survey. Finally, we provide context for further use and development of the index and describe an example application of the index in practice.
ContributorsTheisen, Ryan (Co-author) / Helms, Tyler (Co-author) / Lewis, Paul (Thesis director) / Reiser, Mark (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134373-Thumbnail Image.png
Description
Our research encompassed the prospect draft in baseball and looked at what type of player teams drafted to maximize value. We wanted to know which position returned the best value to the team that drafted them, and which level is safer to draft players from, college or high school. We

Our research encompassed the prospect draft in baseball and looked at what type of player teams drafted to maximize value. We wanted to know which position returned the best value to the team that drafted them, and which level is safer to draft players from, college or high school. We decided to look at draft data from 2006-2010 for the first ten rounds of players selected. Because there is only a monetary cap on players drafted in the first ten rounds we restricted our data to these players. Once we set up the parameters we compiled a spreadsheet of these players with both their signing bonuses and their wins above replacement (WAR). This allowed us to see how much a team was spending per win at the major league level. After the data was compiled we made pivot tables and graphs to visually represent our data and better understand the numbers. We found that the worst position that MLB teams could draft would be high school second baseman. They returned the lowest WAR of any player that we looked at. In general though high school players were more costly to sign and had lower WARs than their college counterparts making them, on average, a worse pick value wise. The best position you could pick was college shortstops. They had the trifecta of the best signability of all players, along with one of the highest WARs and lowest signing bonuses. These were three of the main factors that you want with your draft pick and they ranked near the top in all three categories. This research can help give guidelines to Major League teams as they go to select players in the draft. While there are always going to be exceptions to trends, by following the enclosed research teams can minimize risk in the draft.
ContributorsValentine, Robert (Co-author) / Johnson, Ben (Co-author) / Eaton, John (Thesis director) / Goegan, Brian (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Information Systems (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Career information for degrees in statistics and data science according to frequently asked questions and twelve major categories of interest: arts, business, education, engineering, environment, government, law, medicine, science, social science, sports, and technology.

ContributorsDerby-Lawson, Lili (Author) / Zheng, Yi (Thesis director) / Zhang, Helen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Economics Program in CLAS (Contributor) / School of Sustainability (Contributor)
Created2023-05
132267-Thumbnail Image.png
Description
AARP estimates that 90% of seniors wish to remain in their homes during retirement. Seniors need assistance as they age, historically they have received assistance from either family members, nursing homes, or Continuing Care Retirement Communities. For seniors not wanting any of these options, there has been very few alternatives.

AARP estimates that 90% of seniors wish to remain in their homes during retirement. Seniors need assistance as they age, historically they have received assistance from either family members, nursing homes, or Continuing Care Retirement Communities. For seniors not wanting any of these options, there has been very few alternatives. Now, the emergence of the continuing care at home program is providing hope for a different method of elder care moving forward. CCaH programs offer services such as: skilled nursing care, care coordination, emergency response systems, aid with personal and health care, and transportation. Such services allow seniors to continue to live in their own home with assistance as their health deteriorates over time. Currently, only 30 CCaH programs exist. With the growth of the elderly population in the coming years, this model seems poised for growth.
ContributorsSturm, Brendan (Author) / Milovanovic, Jelena (Thesis director) / Hassett, Matthew (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165134-Thumbnail Image.png
Description
A factor accounting for the COVID-19 pandemic was added to a generalized linear model to more accurately predict unpaid claims. COVID-19 has affected not just healthcare, but all sectors of the economy. Because of this, whether or not an automobile insurance claim is filed during the pandemic needs to be

A factor accounting for the COVID-19 pandemic was added to a generalized linear model to more accurately predict unpaid claims. COVID-19 has affected not just healthcare, but all sectors of the economy. Because of this, whether or not an automobile insurance claim is filed during the pandemic needs to be taken into account while estimating unpaid claims. Reserve-estimating functions such as glmReserve from the “ChainLadder” package in the statistical software R were experimented with to produce their own results. Because of their insufficiency, a manual approach to building the model turned out to be the most proficient method. Utilizing the GLM function, a model was built that emulated linear regression with a factor for COVID-19. The effects of such a model are analyzed based on effectiveness and interpretablility. A model such as this would prove useful for future calculations, especially as society is now returning to a “normal” state.
ContributorsKossler, Patrick (Author) / Zicarelli, John (Thesis director) / Milovanovic, Jelena (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05