Matching Items (12)
Filtering by

Clear all filters

137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
Description

Nowadays, kids are exposed to technology at an incredibly early age. According to a study by YouGov in the United Kingdom, 88% of 12-year-olds are entrusted with their own devices and 85% of children at age 6 have access to a tablet at home (YouGov). In the US, according to

Nowadays, kids are exposed to technology at an incredibly early age. According to a study by YouGov in the United Kingdom, 88% of 12-year-olds are entrusted with their own devices and 85% of children at age 6 have access to a tablet at home (YouGov). In the US, according to MarketingProfs 75% of children 8 and under have access to some type of smart device. In an ever-growing technological world, it is important to make sure that kids are enjoying entertainment that enhances their growth and protects them from inappropriate content (Nanji). I wanted to create a browser game that explains the importance of Security in a colorful, fun environment with a friendly playable character. The game I created is a 2D platformer in which the player learns about the importance of passwords and keeping them secure.

ContributorsMichalik, Jacob (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
161183-Thumbnail Image.png
Description

For my creative project thesis, I have designed and developed a video game called Amity Academy. Amity Academy is a strategic resource management simulator that aims to subvert genre expectations and challenge generally accepted definitions of success and leadership both in-game and in the real world. It does so by

For my creative project thesis, I have designed and developed a video game called Amity Academy. Amity Academy is a strategic resource management simulator that aims to subvert genre expectations and challenge generally accepted definitions of success and leadership both in-game and in the real world. It does so by moving the focus away from amassing large amounts of in-game currencies and becoming politically or militarily dominant towards caring for the denizens of the social unit the player controls. The player acts as an administrator at a school where they must make decisions on how to best run the institution. Although they are allowed to lead the school however they see fit, the emphasis is on prioritizing strong interpersonal and intracommunity relationships and connections and the wellbeing and happiness of those under their ward. Amity Academy is also part of the newly-emerging “wholesome” or “comfy” game genre. Unlike serious strategy games that can be stressful, Amity Academy presents a self-paced, low-stakes situation. This mood is further encouraged by calming environmental noises and music, a gentle color palette, and a charming art style. The game feels domestic and quaint, almost reminiscent of a Jane Wooster Scott or Mary Singleton painting. You can download and play Amity Academy here: https://mvaughn8.itch.io/amity-academy

ContributorsVaughn, Meghan (Author) / Kobayashi, Yoshihiro (Thesis director) / Holmes, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
131123-Thumbnail Image.png
Description
Gamification is used to provide an entertaining alternative to educate an individual on a topic that has proven to be difficult, confusing, or undesirable. This thesis describes the design of a video game whose goal was to provide a way for coders and non-coders to educate themselves on programming scopes

Gamification is used to provide an entertaining alternative to educate an individual on a topic that has proven to be difficult, confusing, or undesirable. This thesis describes the design of a video game whose goal was to provide a way for coders and non-coders to educate themselves on programming scopes while also being entertained in the process. Reaching the goal required using the puzzle genre to create a concept where programming scopes would serve as the primary mechanic while also using various other programming concepts to complement it. These concepts include variables, values, functions, programming statements, and conditions.
In order to ensure that the game worked both as an educational tool as well as an entertaining one, informal testers were used with various degrees of experience in both coding and video games. After reaching the end of the game, each of the testers demonstrated that they understood the programming concepts in their video game form. However, this understanding came after additional verbal help was supplied and illustrated that the tutorial section of the game would need to be re-worked in order to efficiently demonstrate each concept.
ContributorsLucero, Elijah Ray (Author) / Bazzi, Rida (Thesis director) / Selgrad, Justin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165123-Thumbnail Image.png
Description
Mylonite is a mobile game that fits within the "Endless Runner" genre. This write-up contains a detailing of the development process, including the inspiration, technology selection, development process, challenges faced, and future additions. A final copy of the game can be found on the Apple App Store and the Google

Mylonite is a mobile game that fits within the "Endless Runner" genre. This write-up contains a detailing of the development process, including the inspiration, technology selection, development process, challenges faced, and future additions. A final copy of the game can be found on the Apple App Store and the Google Play Store under the name Mylonite.
ContributorsRohd, Daniel (Author) / Ahmad, Altaf (Thesis director) / Olsen, Chris (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05
164974-Thumbnail Image.png
Description
The goal of this project was to determine if the chosen research and testing method would result in a game where students would practice math in the best way. This was done by creating a video game using Unity that followed key principles for designing a math game and for

The goal of this project was to determine if the chosen research and testing method would result in a game where students would practice math in the best way. This was done by creating a video game using Unity that followed key principles for designing a math game and for how students should practice math in general. Testing was done on participants to determine the strategies they used in order to play the game and these strategies were then defined and categorized based on their effectiveness and how well they met the learning principles. Also, the participants were asked a before and after question to determine if the game improved their overall attitude towards math to make sure the game was helping them learn and was not a hindrance. There was an overall increase in the participants’ feelings towards math after playing the game as well as beneficial strategies, so the research and testing method was overall a success.
ContributorsVaillancourt, Tyler (Author) / Kobayashi, Yoshihiro (Thesis director) / Amresh, Ashish (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165947-Thumbnail Image.png
Description

Party on Wall Street is a web-based video game developed by Maroon and Gold Game Studios. As an educational entrepreneurship video game, Party on Wall Street provides a refreshing and exciting new experience for the tycoons in society who want a little more of that entrepreneurial lifestyle. With proper research

Party on Wall Street is a web-based video game developed by Maroon and Gold Game Studios. As an educational entrepreneurship video game, Party on Wall Street provides a refreshing and exciting new experience for the tycoons in society who want a little more of that entrepreneurial lifestyle. With proper research on customer demographics, Maroon and Gold Game Studio’s brand identity consists of a modern game with multiple use cases. With strong partnerships with multiple creatives and built from scratch game development, Party on Wall Street implements a fun, high intensity business competitive environment for players and students to engage in. This thesis consists of building an interactive experience through the use of AirConsole, a third party platform that hosts the game and allows players to join it by connecting to the same website on their mobile device. The primary user has access to hosting a game which can be casted to a larger screen, typically a television. When hosting a game, a room code is generated which can be typed in on the mobile device to connect to the game. When all players have joined the game, the host can initiate it. Players go through 6 rounds of pitch style investing presentations and have the opportunity to invest in other products with the ultimate goal of earning the most money. In the end, the game was successfully implemented, extensively user tested, and is under review by the AirConsole game team. Over the last year, the team successfully brought an idea through the entire product development process, learned to build a game in Unity, made practice of extensible testing and validation methods, and leveraged customer research and feedback to design a game that is ultimately both enjoyable and educational.

ContributorsKhan, Shaheer (Author) / Wood, Collin (Co-author) / Waters, Eric (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Balven, Rachel (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05
165865-Thumbnail Image.png
Description

Party on Wall Street is a web-based video game developed by Maroon and Gold Game Studios. As an educational entrepreneurship video game, Party on Wall Street provides a refreshing and exciting new experience for the tycoons in society who want a little more of that entrepreneurial lifestyle. With proper research

Party on Wall Street is a web-based video game developed by Maroon and Gold Game Studios. As an educational entrepreneurship video game, Party on Wall Street provides a refreshing and exciting new experience for the tycoons in society who want a little more of that entrepreneurial lifestyle. With proper research on customer demographics, Maroon and Gold Game Studio’s brand identity consists of a modern game with multiple use cases. With strong partnerships with multiple creatives and built from scratch game development, Party on Wall Street implements a fun, high intensity business competitive environment for players and students to engage in. This thesis consists of building an interactive experience through the use of AirConsole, a third party platform that hosts the game and allows players to join it by connecting to the same website on their mobile device. The primary user has access to hosting a game which can be casted to a larger screen, typically a television. When hosting a game, a room code is generated which can be typed in on the mobile device to connect to the game. When all players have joined the game, the host can initiate it. Players go through 6 rounds of pitch style investing presentations and have the opportunity to invest in other products with the ultimate goal of earning the most money. In the end, the game was successfully implemented, extensively user tested, and is under review by the AirConsole game team. Over the last year, the team successfully brought an idea through the entire product development process, learned to build a game in Unity, made practice of extensible testing and validation methods, and leveraged customer research and feedback to design a game that is ultimately both enjoyable and educational.

ContributorsWaters, Eric (Author) / Wood, Collin (Co-author) / Khan, Shaheer (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Balven, Rachel (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05