Matching Items (3)
Filtering by

Clear all filters

151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
156142-Thumbnail Image.png
Description
Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis

Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis method, contain wrinkles affecting their gas separation characteristics and the method itself is difficult to scale up. Moreover, the production of graphene oxide membranes with fine-tuned interlayer spacing for improved molecular separation is still a challenge. These unsolved issues will affect their potential impact on industrial gas separation applications.

In this study, high quality graphene oxide membranes are synthesized on polyester track etch substrates by different deposition methods and characterized by XRD, SEM, AFM as well as single gas permeation and binary (H2/CO2) separation experiments. Membranes are made from large graphene oxide sheets of different sizes (33 and 17 micron) using vacuum filtration to shed more light on their transport mechanism. Membranes are made from dilute graphene oxide suspension by easily scalable spray coating technique to minimize extrinsic wrinkle formation. Finally, Brodie’s derived graphene oxide sheets were used to prepare membranes with narrow interlayer spacing to improve their (H2/CO2) separation performance.

An inter-sheet and inner-sheet two-pathway model is proposed to explain the permeation and separation results of graphene oxide membranes obtained in this study. At room temperature, large gas molecules (CH4, N2, and CO2) permeate through inter-sheet pathway of the membranes, exhibiting Knudsen like diffusion characteristics, with the permeance for the small sheet membrane about twice that for the large sheet membrane. The small gases (H2 and He) exhibit much higher permeance, showing significant flow through an inner-sheet pathway, in addition to the flow through the inter-sheet pathway. Membranes prepared by spray coating offer gas characteristics similar to those made by filtration, however using dilute graphene oxide suspension in spray coating will help reduce the formation of extrinsic wrinkles which result in reduction in the porosity of the inter-sheet pathway where the transport of large gas molecules dominates. Brodie’s derived graphene oxide membranes showed overall low permeability and significant improvement in in H2/CO2 selectivity compared to membranes made using Hummers’ derived sheets due to smaller interlayer space height of Brodie’s sheets (~3 Å).
ContributorsIbrahim, Amr Fatehy Muhammad (Author) / Lin, Jerry Y.S. (Thesis advisor) / Mu, Bin (Committee member) / Lind, Mary (Committee member) / Green, Matthew (Committee member) / Wang, Qing (Committee member) / Arizona State University (Publisher)
Created2018
157001-Thumbnail Image.png
Description
Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged

Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged PV modules. EVA was extracted from three field-aged modules (two glass/backsheet and one glass/glass modules) from three different manufacturers from various regions (cell edges, cell centers, and non-cell region) from each module based on their visual and UV Fluorescence images. Characterization techniques such as I-V measurements, Colorimetry, Different Scanning Calorimetry, Thermogravimetric Analysis, Raman spectroscopy, and Fourier Transform Infrared Spectroscopy were performed on EVA samples.

The intensity of EVA discoloration was quantified using colorimetric measurements. Module performance parameters like Isc and Pmax degradation rates were calculated from I-V measurements. Properties such as degree of crystallinity, vinyl acetate content and degree of crosslinking were calculated from DSC, TGA, and Raman measurements, respectively. Polyenes responsible for EVA browning were identified in FTIR spectra.

The results from the characterization techniques confirmed that when EVA undergoes degradation, crosslinking in EVA increases beyond 90% causing a decrease in the degree of crystallinity and an increase in vinyl acetate content of EVA. Presence of polyenes in FTIR spectra of degraded EVA confirmed the occurrence of Norrish II reaction. However, photobleaching occurred in glass/backsheet modules due to the breathable backsheet whereas no photobleaching occurred in glass/glass modules because they were hermetically sealed. Hence, the yellowness index along with the Isc and Pmax degradation rates of EVA in glass/glass module is higher than that in glass/backsheet modules.

The results implied that more acetic acid was produced in the non-cell region due to its double layer of EVA compared to the front EVA from cell region. But, since glass/glass module is hermetically sealed, acetic acid gets entrapped inside the module further accelerating EVA degradation whereas it diffuses out through backsheet in glass/backsheet modules. Hence, it can be said that EVA might be a good encapsulant for glass/backsheet modules, but the same cannot be said for glass/glass modules.
ContributorsPatel, Aesha Parimalbhai (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2018