Matching Items (17)
Filtering by

Clear all filters

153408-Thumbnail Image.png
Description
Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability

Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability to self-renew and rapidly proliferate into effector cells during secondary infections. However during persistent viral infection, T cell differentiation is disrupted due to sustained antigen stimulation resulting in a loss of T cell effector function. Despite the development of vaccines for a wide range of viral diseases, efficacious vaccines for persistent viral infections have been challenging to design. Immunization against virus T cell epitopes has been proposed as an alternative vaccination strategy for persistent viral infections, such as HIV. However, vaccines that selectively engage T cell responses can result in inappropriate immune responses that increase, rather than prevent, disease. Quantitative models of virus infection and immune response were used to investigate how virus and immune system variables influence pathogenic versus protective T cell responses generated during persistent viral infection. It was determined that an intermediate precursor frequency of virus-specific memory CD8 T cells prior to LCMV infection resulted in maximum T cell mediated pathology. Increased pathology was independent of antigen sensitivity or the diversity of TCR in the CD8 T cell response, but was dependent on CD8 T cell production of TNF and the magnitude of initial virus exposure. The threshold for exhaustion of responding CD8 T cells ultimately influences the precursor frequency that causes enhanced disease.In addition, viral infection can occur in the context of co-infection by heterologous pathogens that modulate immune responses and/or disease. Co-infection of two unrelated viruses in their natural host, Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV) infection in mice, were studied. ECTV infection can be a lethal infection in mice due in part to the blockade of antiviral cytokines, including Type I Interferons (IFN-I). It was determined that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, presumably due to IFN-I induction by LCMV. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and biased toward effector-memory cell generation. Thus, providing evidence for bi-directional effects of viral co-infection that modulate disease and immunity. Together the results suggest heterogeneity in T cell responses during vaccination with viral vectors may be in part due to heterologous virus infection or vaccine usage and that TNF-blockade may be useful for minimizing pathology while maintaining protection during virus infection. Lastly, quantitative mathematical models of virus and T cell immunity can be useful to generate predictions regarding which molecular and cellular pathways mediate T cell protection versus pathology.
ContributorsMcAfee, Megan (Author) / Blattman, Joseph N (Thesis advisor) / Anderson, Karen (Committee member) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2015
153363-Thumbnail Image.png
Description
Osteosarcoma is the most common bone cancer in children and adolescents. Patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T-lymphocytes (CTL) limit the development of metastatic osteosarcoma. I have investigated the role of Programmed Death Receptor-1 (PD-1) in limiting the efficacy of

Osteosarcoma is the most common bone cancer in children and adolescents. Patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T-lymphocytes (CTL) limit the development of metastatic osteosarcoma. I have investigated the role of Programmed Death Receptor-1 (PD-1) in limiting the efficacy of immune mediated control of metastatic osteosarcoma. I show that human metastatic, but not primary, osteosarcoma tumors express the ligand for PD-1 (PD-L1) and that tumor infiltrating CTL express PD-1, suggesting this pathway may limit CTL control of metastatic osteosarcoma in patients. PD-L1 is also expressed on the K7M2 osteosarcoma tumor cell line that establishes metastases in mice, and PD-1 is expressed on tumor infiltrating CTL during disease progression. Blockade of PD-1/PD-L1 interactions dramatically improves the function of osteosarcoma-reactive CTL in vitro and in vivo, and results in decreased tumor burden and increased survival in the K7M2 mouse model of metastatic osteosarcoma. My results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma should be pursued as a therapeutic strategy. However, PD-1/PD-L1 blockade treated mice still succumb to disease due to selection of PD-L1 mAb resistant tumor cells via up-regulation of other co-inhibitory T cell receptors. Combinational α-CTLA-4 and α-PD-L1 blockade treated mice were able to completely eradicate metastatic osteosarcoma, and generate immunity to disease. These results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma, although improves survival, may lead to tumor resistance, requiring combinational immunotherapies to combat and eradicate disease.
ContributorsLussier, Danielle (Author) / Blattman, Joseph N. (Thesis advisor) / Anderson, Karen (Committee member) / Goldstein, Elliott (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2015
135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132442-Thumbnail Image.png
Description
Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer,

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis director) / Mason, Hugh (Committee member) / Hariadi, Hugh (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133045-Thumbnail Image.png
Description
Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a

Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a need for developing a rapid biomarker to profile immunity to these viruses. The viral E7 oncogene is expressed in most HPV-associated cancers and anti-E7 antibodies can be detected in the blood of patients with cervical cancer. This research was focused on viral E7 oncogene expression to be used in development of low-cost point of care tests, enabling patients from low resource settings to detect the asymptotic stage of cervical cancer and be able to seek treatment early. In order to produce the E7 protein in vitro to measure antibody levels, GST tagged E7 genes from HPV 16, 18 and 45 species were inserted into the pDEST15 vector and expressed in E. coli BL21DE3 cells that were induced with 1mM of IPTG. The E7-GST fused expressed protein was then purified using glutathione beads and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein expression was 5.8 \u03bcg/ml for HPV 16E7 in 500 ml culture and for the 500 ml culture of HPV 18 E7 and 45 E7 were 10.5 \u03bcg/ml and 10.5 \u03bcg/ml for HPV 18E7 and 45E7 respectively. High yield values are showing high expression levels of GST-tagged E7 recombinant protein which can be used for serotyping a number of individuals. This shows that HPV E7 can be produced in large quantities that can potentially be used in point of care tests that can help identify women at risk of cervical cancer. In conclusion, the E7 protein produced in this study can potentially be used to induce humoral responses in patients\u2019 sera for understanding the immune response of cervical cancer.
ContributorsMakuyana, Ntombizodwa (Author) / Anderson, Karen (Thesis director) / Ewaisha, Radwa (Committee member) / Varsani, Arvind (Committee member) / Hou, Ching-Wen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135617-Thumbnail Image.png
Description
Identifying immunoreactive cytotoxic T lymphocytes (CTLs) by current technologies (cytokine secretion, intracellular cytokine, ELISPOT, and MHC tetramer assays) is often difficult when probing for multiple target antigens. CTLs activate and induce apoptosis of pathogenic cells when T-cell receptors (TCRs) specifically bind to antigenic peptides and major histocompatibility complexes (pMHCs) presented

Identifying immunoreactive cytotoxic T lymphocytes (CTLs) by current technologies (cytokine secretion, intracellular cytokine, ELISPOT, and MHC tetramer assays) is often difficult when probing for multiple target antigens. CTLs activate and induce apoptosis of pathogenic cells when T-cell receptors (TCRs) specifically bind to antigenic peptides and major histocompatibility complexes (pMHCs) presented on the target cell’s surface. Flow cytometric MHC class I tetramer assays allow for the direct quantification and sorting of most CD8+ T lymphocytes whose TCRs recognize bound peptides, regardless of effector function. Class I tetramers are traditionally produced using BL21-DE3 E. coli expression, denaturation and folding in vitro, which is technically challenging, time-consuming, and low-throughput. We are developing an assay amenable to rapid, high-throughput screening of peptide libraries to characterize and quantitate antigen-specific CTLs in peripheral blood mononuclear cells (PBMCs). Baculovirus expression systems, utilizing host eukaryotic chaperones and isomerases, are capable of producing soluble, properly-folded protein complexes with high yields. The HLA-A*0201 heavy chain and beta-2-microglobulin genes were cloned into pIEx baculovirus expression vectors. Recombinant HLA-A*0201 and β2m viruses were synthesized using the BacMagic-3 DNA/pIEx method and transfected into Spodoptera frugiperda (Sf9) cells, and protein expression was confirmed by Western blot. To prepare T cells for testing, PBMCs from a healthy HLA-A2+ donor were collected and pulsed with DMSO control or CEF peptide pool (a mixture of CMV-, EBV-, and Flu-specific HLA class I epitopes). After 5 days, the CD8+ and CD8- fractions were sorted by MACS-based magnetic separation, and the frequency of FluM1-specific lymphocytes in the CD8+ populations was determined (0.1% of DMSO control vs. 0.772% of CEF-pulsed cells) using a commercial tetramer. We are optimizing HLA-A*0201 and β2m baculovirus co-infection ratios and evaluating the efficiency of intracellular MHC folding.
ContributorsRoesler, Alexander Scott (Author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Lung metastatic cancers represent a major challenge in both basic and clinical cancer research. The ability to treat lung metastases to date has been challenging, current treatment paradigms are a mix of classic radiotherapy, chemotherapies and tumor-targeted therapies, with no one treatment that is effective for all tumors. Oncolytic viruses

Lung metastatic cancers represent a major challenge in both basic and clinical cancer research. The ability to treat lung metastases to date has been challenging, current treatment paradigms are a mix of classic radiotherapy, chemotherapies and tumor-targeted therapies, with no one treatment that is effective for all tumors. Oncolytic viruses (OVs) represent a new therapeutic modality for hard-to-treat tumors. However, major questions still exist in the field, especially around how to therapeutically arm and deliver OVs to sites of disseminated tumors. To address this need, oncolytic myxoma viruses (MYXV) that expresses TNF superfamily member transgenes (vMYX-hTNF or vMyx-mLIGHT) were tested in an immunocompetent syngeneic lung metastatic murine osteosarcoma model. Three versions of this model were used; 1-an early intervention model, 2-an established tumor model, defined by both average tumor burden and failure of anti-PD-L1 and vMyx-TNF monotherapies, and 3-a late-stage disease model, defined by the failure the combination of vMyx-hTNF/PBMCs and anti-PD-L1 therapy. These three models were designed to test different questions about therapeutic efficacy of armed MYXV and delivery of MYXV to lung metastases. In the early intervention model, vMyx-hTNF was found to be an effective therapy, especially when delivered by leukocyte carrier cells (either bone marrow or PBMCs). Next, the combination of immune checkpoint inhibitors, including anti-PD-L1, anti-PD-1 and anti-CTLA-4, with vMyx-TNF/PBMCs were found to increase efficacy in treated mice compared to monotherapies. The established model was used to test potential synergy of vMyx-hTNF with anti-PD-L1 therapy. This model was defined by the failure of the monotherapies, however, in combination, treated mice survived significantly longer, and had lower average tumor burden throughout. This model was also used to test tumor specific delivery using ex vivo loaded PBMCs as carrier cells. Using MYXV expressing Tdtomato, PBMCs were found to deliver MYXV to tumors more effectively than free virus. In the most stringent late-stage disease model, vMyx-mLIGHT/PBMCs and vMyx-mLIGHT/PBMCs plus anti-PD-1 were tested and found to be efficacious where combination vMyx-TNF/PBMCs plus PD-1 failed. These results taken together show that TNFSF arming of MYXV, especially when delivered by autologous PBMCs, represents a new potential treatment strategy for lung metastatic tumors.
ContributorsChristie, John Douglas (Author) / McFadden, Grant (Thesis advisor) / Blattman, Joseph (Committee member) / Jacobs, Bertram (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2021
172007-Thumbnail Image.png
Description
IOsteosarcoma is the most common bone cancer and typically affects patients in the second decade of life. Current treatment methods have not proven effective for treating reoccurring or metastatic osteosarcoma (mOS) given the 5-year survival rate of 15-30%. Previous work showed that using the immune system to fight the cancer

IOsteosarcoma is the most common bone cancer and typically affects patients in the second decade of life. Current treatment methods have not proven effective for treating reoccurring or metastatic osteosarcoma (mOS) given the 5-year survival rate of 15-30%. Previous work showed that using the immune system to fight the cancer significantly improved survival of mOS in mice, but approximately 40-50% of treated mice still succumbed to disease. To further improve immunotherapy, I analyzed immune cells in the tumor bed and observed high numbers of a rare T cell subtype: CD4hiCD8αhi, or double positive (DP), T cells. While previous literature found mature DP T cells in chronic diseases, the associations and functions of this rare T cell subtype varied between studies and were unknown for mOS. Controlling for age, chronicity of disease, and environmental exposure, I found DP T cells composed a higher percentage of T cells in the cancer as tumor burden increased. I then tested whether the DP cells were pro- or anti-tumor. I found that DP cells produced the cytokines IFNγ and IL-2 when exhaustion was overcome. They also expressed FasL for cytotoxic function, although the target is unknown. These findings suggest DP T cells have multifunctionality, which could be advantageous when responding to high antigen load. II Course-based undergraduate research experiences (CUREs) offer students opportunities to engage in critical thinking and problem solving. However, quantitating the impact that incorporating research into undergraduate courses has on student learning has been difficult since most CUREs lack a comparable traditional course as a control. Because the overall class structure remained unaltered when our upper division immunology course transitioned to a CURE class, we realized retrospectively that we were in a unique position to quantitate the impact of incorporating research on student performance. I then analyzed the summative assessments used to assess student learning and found that students in the CURE format class performed significantly better on quizzes, exams, and reports. There were no significant differences in academic levels, degree programs, or grade point averages, suggesting improved performance was due to increased engagement of students in research.
ContributorsAppel, Nicole (Author) / Blattman, Joseph (Thesis advisor) / Anderson, Karen (Committee member) / Lake, Douglas (Committee member) / Hingorani, Pooja (Committee member) / Arizona State University (Publisher)
Created2022
171888-Thumbnail Image.png
Description
Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of

Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of the predicted robustness of CD8+ T cell responses in 23 different populations. The robustness of CD8+ T cell responses in a given population was modeled by predicting the efficiency of endemic MHC-I protein variants to present peptides derived from SARS-CoV-2 proteins to circulating T cells. To accomplish this task, an algorithm, called EnsembleMHC, was developed to predict viral peptides with a high probability of being recognized by CD T cells. It was discovered that there was significant variation in the efficiency of different MHC-I protein variants to present SARS-CoV-2 derived peptides, and countries enriched with variants with high presentation efficiency had significantly lower mortality rates. Second, a biophysics-based MHC-I peptide prediction algorithm was developed. The MHC-I protein is the most polymorphic protein in the human genome with polymorphisms in the peptide binding causing striking changes in the amino acid compositions, or binding motifs, of peptide species capable of stable binding. A deep learning model, coined HLA-Inception, was trained to predict peptide binding using only biophysical properties, namely electrostatic potential. HLA-Inception was shown to be extremely accurate and efficient at predicting peptide binding motifs and was used to determine the peptide binding motifs of 5,821 MHC-I protein variants. Finally, the impact of stalk glycosylations on NL63 protein dynamics was investigated. Previous data has shown that coronavirus crown glycans play an important role in immune evasion and receptor binding, however, little is known about the role of the stalk glycans. Through the integration of computational biology, experimental data, and physics-based simulations, the stalk glycans were shown to heavily influence the bending angle of spike protein, with a particular emphasis on the glycan at position 1242. Further investigation revealed that removal of the N1242 glycan significantly reduced infectivity, highlighting a new potential therapeutic target. Overall, these investigations and associated innovations in integrative modeling.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis advisor) / Singharoy, Abhishek (Thesis advisor) / Woodbury, Neal (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2022