Matching Items (7)
Filtering by

Clear all filters

152641-Thumbnail Image.png
Description
The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive

The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive immune system is further split into two main categories: humoral and cellular immunity. The humoral immune response produces antibodies against specific targets, and these antibodies can be used to learn about disease and normal states. In this document, I use antibodies to characterize the immune system in two ways: 1. I determine the Antibody Status (AbStat) from the data collected from applying sera to an array of non-natural sequence peptides, and demonstrate that this AbStat measure can distinguish between disease, normal, and aged samples as well as produce a single AbStat number for each sample; 2. I search for antigens for use in a cancer vaccine, and this search results in several candidates as well as a new hypothesis. Antibodies provide us with a powerful tool for characterizing the immune system, and this natural tool combined with emerging technologies allows us to learn more about healthy and disease states.
ContributorsWhittemore, Kurt (Author) / Sykes, Kathryn (Thesis advisor) / Johnston, Stephen A. (Committee member) / Jacobs, Bertram (Committee member) / Stafford, Phillip (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
150387-Thumbnail Image.png
Description
The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need to understand vaccination from vaccine design to prediction of vaccine efficacy using mathematical models. Post-exposure vaccination with VACV has been suggested to be effective if administered within four days of smallpox exposure although this has not been definitively studied in humans. The first and second chapters analyze post-exposure prophylaxis of VACV in an animal model using v50ΔB13RMγ, a recombinant VACV expressing murine interferon gamma (IFN-γ) also known as type II IFN. While untreated animals infected with wild type VACV die by 10 days post-infection (dpi), animals treated with v50ΔB13RMγ 1 dpi had decreased morbidity and 100% survival. Despite these differences, the viral load was similar in both groups suggesting that v50ΔB13RMγ acts as an immunoregulator rather than as an antiviral. One of the main characteristics of VACV is its resistance to type I IFN, an effect primarily mediated by the E3L protein, which has a Z-DNA binding domain and a double-stranded RNA (dsRNA) binding domain. In the third chapter a VACV that independently expresses both domains of E3L was engineered and compared to wild type in cells in culture. The dual expression virus was unable to replicate in the JC murine cell line where both domains are needed together for replication. Moreover, phosphorylation of the dsRNA dependent protein kinase (PKR) was observed at late times post-infection which indicates that both domains need to be linked together in order to block the IFN response. Because smallpox has already been eradicated, the utility of mathematical modeling as a tool for predicting disease spread and vaccine efficacy was explored in the last chapter using dengue as a disease model. Current modeling approaches were reviewed and the 2000-2001 dengue outbreak in a Peruvian region was analyzed. This last section highlights the importance of interdisciplinary collaboration and how it benefits research on infectious diseases.
ContributorsHolechek, Susan A (Author) / Jacobs, Bertram L (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Frasch, Wayne (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
149941-Thumbnail Image.png
Description
There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of

There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of labor is known as temporal polyethism. Foragers demonstrate further division of labor with some bees biasing collection towards protein (pollen) and others towards carbohydrates (nectar). The Reproductive Ground-plan Hypothesis proposes that the ovary plays a regulatory role in foraging division of labor. European honey bee workers that have been selectively bred to store larger amounts of pollen (High strain) also have a higher number of ovarioles per ovary than workers from strains bred to store less pollen (Low strain). High strain bees also initiate foraging earlier than Low strain bees. The relationship between ovariole number and foraging behavior is also observed in wild-type Apis mellifera and Apis cerana: pollen-biased foragers have more ovarioles than nectar-biased foragers. In my first study, I investigated the pre-foraging behavioral patterns of the High and Low strain bees. I found that High strain bees progress through the temporal polyethism at a faster rate than Low strain bees. To ensure that the observed relationship between the ovary and foraging bias is not due to associated separate genes for ovary size and foraging behavior, I investigated foraging behavior of African-European backcross bees. The backcross breeding program was designed to break potential gene associations. The results from this study demonstrated the relationship between the ovary and foraging behavior, supporting the proposed causal linkage between reproductive development and behavioral phenotype. The final study was designed to elucidate a regulatory mechanism that links ovariole number with sucrose sensitivity, and loading decisions. I measured ovariole number, sucrose sensitivity and sucrose solution load size using a rate-controlled sucrose delivery system. I found an interaction effect between ovariole number and sucrose sensitivity for sucrose solution load size. This suggests that the ovary impacts carbohydrate collection through modulation of sucrose sensitivity. Because nectar and pollen collection are not independent, this would also impact protein collection.
ContributorsSiegel, Adam J (Author) / Page, Jr., Robert E (Thesis advisor) / Hamilton, Andrew L. (Committee member) / Brent, Colin S (Committee member) / Amdam, Gro V (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2011
157007-Thumbnail Image.png
Description
Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a

Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a rapid, cost-effective, and minimally-invasive window to disease and are ideal for population-based screening. Circulating immune biomarkers are stable, measurable, and can betray the underlying antigen when present below detection levels or even no longer present. This dissertation aims to investigate potential circulating immune biomarkers with applications in cancer detection and novel therapies. Over 600,000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers. A key challenge in understanding HPV immunobiology and developing immune biomarkers is the diversity of HPV types and the need for multiplexed display of HPV antigens. In Project 1, nucleic acid programmable protein arrays displaying the proteomes of 12 HPV types were developed and used for serum immunoprofiling of women with cervical lesions or invasive cervical cancer. These arrays provide a valuable high-throughput tool for measuring the breadth, specificity, heterogeneity, and cross-reactivity of the serologic response to HPV. Project 2 investigates potential biomarkers of immunity to the bacterial CRISPR/Cas9 system that is currently in clinical trials for cancer. Pre-existing B cell and T cell immune responses to Cas9 were detected in humans and Cas9 was modified to eliminate immunodominant epitopes while preserving its function and specificity. This dissertation broadens our understanding of the immunobiology of cervical cancer and provides insights into the immune profiles that could serve as biomarkers of various applications in cancer.
ContributorsEwaisha, Radwa Mohamed Emadeldin Mahmoud (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas F (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2018
154653-Thumbnail Image.png
Description
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and coordinated fashion to induce resistance and ensure survival. Salmonella is subjected to a series of stresses that include temperature shifts, pH variability, detergent-like bile salts, oxidative environments and changes in fluid shear levels. Previously, our lab showed that cultures of S. Typhimurium grown under physiological low fluid shear (LFS) conditions similar to those encountered in the intestinal tract during infection uniquely regulates the virulence, gene expression and pathogenesis-related stress responses of this pathogen during log phase. Interestingly, the log phase Salmonella mechanosensitive responses to LFS were independent of the master stress response sigma factor, RpoS, departing from our conventional understanding of RpoS regulation. Since RpoS is a growth phase dependent regulator with increased stability in stationary phase, the current study investigated the role of RpoS in mediating pathogenesis-related stress responses in stationary phase S. Typhimurium grown under LFS and control conditions. Specifically, stationary phase responses to acid, thermal, bile and oxidative stress were assayed. To our knowledge the results from the current study demonstrate the first report that the mechanical force of LFS globally alters the S. Typhimurium χ3339 stationary phase stress response independently of RpoS to acid and bile stressors but dependently on RpoS to oxidative and thermal stress. This indicates that fluid shear-dependent differences in acid and bile stress responses are regulated by alternative pathway(s) in S. Typhimurium, were the oxidative and thermal stress responses are regulated through RpoS in LFS conditions. Results from this study further highlight how bacterial mechanosensation may be important in promoting niche recognition and adaptation in the mammalian host during infection, and may lead to characterization of previously unidentified pathogenesis strategies.
ContributorsCrenshaw, Keith (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016
155004-Thumbnail Image.png
Description
The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which

The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which encodes the E3 protein composed of a Z-NA-binding domain (Z-NA BD) in the N terminus and a highly characterized dsRNA binding domain in the C-terminus. Both domains of E3 have been found to be essential for the inhibition of antiviral states initiated by host type 1 IFNs. However, the mechanism by which the Z-NA-BD of E3’s N-terminus confers IFN resistance has yet to be established. This is partially due to conflicting evidence showing that the Z-NA-BD is dispensable in most cell culture systems, yet essential for pathogenicity in mice. Recently it has been demonstrated that programmed necrosis is an alternative form of cell death that can be initiated by viral infections as part of the host’s innate immune response to control infection. The work presented here reveals that VACV has developed a mechanism to inhibit programmed necrosis. This inhibition occurs through utilizing E3’s N-terminus to prevent the initiation of programmed necrosis involving the host-encoded cellular proteins RIP3 and Z-NA-binding protein DAI. The inhibition of programmed necrosis has been shown to involve regions of both the viral and host proteins responsible for Z-NA binding through in vivo studies demonstrating that deletions of the Z-NA-BD in E3 correspond to an attenuation of pathogenicity in wild type mice that is restored in RIP3- and DAI-deficient models. Together these findings provide novel insight into the elusive function of the Z-NA-binding domain of the N-terminus and its role in preventing host recognition of viral infections. Furthermore, it is demonstrated that a unique mechanism for resisting virally induced programmed necrosis exists. This mechanism, specific to Z-NA binding, involves the inhibition of a DAI dependent form of programmed necrosis possibly by preventing host recognition of viral infections, and hints at the possible biological role of Z-NA in regulating viral infections.
ContributorsHarrington, Heather (Author) / Jacobs, Bertram L (Thesis advisor) / Langland, Jeffery O (Committee member) / Blattman, Joseph (Committee member) / Haydel, Shelly (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016
157846-Thumbnail Image.png
Description
Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis mellifera), Vg has evolved still further to include important social functions

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis mellifera), Vg has evolved still further to include important social functions that are critical to the maintenance and proliferation of colonies. Here, Vg is used to synthesize royal jelly, a glandular secretion produced by a subset of the worker caste that is fed to the queen and young larvae and which is essential for caste development and social immunity. Moreover, Vg in the worker caste sets the pace of their behavioral development as they transition between different tasks throughout their life. In this dissertation, I make several new discoveries about Vg functionality. First, I uncover a colony-level immune pathway in bees that uses royal jelly as a vehicle to transfer pathogen fragments between nestmates. Second, I show that Vg is localized and expressed in the honey bee digestive tract and suggest possible immunological functions it may be performing there. Finally, I show that Vg enters to nucleus and binds to deoxyribonucleic acid (DNA), acting as a potential transcription factor to regulate expression of many genes pertaining to behavior, metabolism, and signal transduction pathways. These findings represent a significant advance in the understanding of Vg functionality and honey bee biology, and set the stage for many future avenues of research.
ContributorsHarwood, Gyan (Author) / Amdam, Gro V (Thesis advisor) / Kusumi, Kenro (Committee member) / Rabeling, Christian (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2019