Matching Items (20)
Filtering by

Clear all filters

153408-Thumbnail Image.png
Description
Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability

Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability to self-renew and rapidly proliferate into effector cells during secondary infections. However during persistent viral infection, T cell differentiation is disrupted due to sustained antigen stimulation resulting in a loss of T cell effector function. Despite the development of vaccines for a wide range of viral diseases, efficacious vaccines for persistent viral infections have been challenging to design. Immunization against virus T cell epitopes has been proposed as an alternative vaccination strategy for persistent viral infections, such as HIV. However, vaccines that selectively engage T cell responses can result in inappropriate immune responses that increase, rather than prevent, disease. Quantitative models of virus infection and immune response were used to investigate how virus and immune system variables influence pathogenic versus protective T cell responses generated during persistent viral infection. It was determined that an intermediate precursor frequency of virus-specific memory CD8 T cells prior to LCMV infection resulted in maximum T cell mediated pathology. Increased pathology was independent of antigen sensitivity or the diversity of TCR in the CD8 T cell response, but was dependent on CD8 T cell production of TNF and the magnitude of initial virus exposure. The threshold for exhaustion of responding CD8 T cells ultimately influences the precursor frequency that causes enhanced disease.In addition, viral infection can occur in the context of co-infection by heterologous pathogens that modulate immune responses and/or disease. Co-infection of two unrelated viruses in their natural host, Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV) infection in mice, were studied. ECTV infection can be a lethal infection in mice due in part to the blockade of antiviral cytokines, including Type I Interferons (IFN-I). It was determined that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, presumably due to IFN-I induction by LCMV. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and biased toward effector-memory cell generation. Thus, providing evidence for bi-directional effects of viral co-infection that modulate disease and immunity. Together the results suggest heterogeneity in T cell responses during vaccination with viral vectors may be in part due to heterologous virus infection or vaccine usage and that TNF-blockade may be useful for minimizing pathology while maintaining protection during virus infection. Lastly, quantitative mathematical models of virus and T cell immunity can be useful to generate predictions regarding which molecular and cellular pathways mediate T cell protection versus pathology.
ContributorsMcAfee, Megan (Author) / Blattman, Joseph N (Thesis advisor) / Anderson, Karen (Committee member) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2015
153363-Thumbnail Image.png
Description
Osteosarcoma is the most common bone cancer in children and adolescents. Patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T-lymphocytes (CTL) limit the development of metastatic osteosarcoma. I have investigated the role of Programmed Death Receptor-1 (PD-1) in limiting the efficacy of

Osteosarcoma is the most common bone cancer in children and adolescents. Patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T-lymphocytes (CTL) limit the development of metastatic osteosarcoma. I have investigated the role of Programmed Death Receptor-1 (PD-1) in limiting the efficacy of immune mediated control of metastatic osteosarcoma. I show that human metastatic, but not primary, osteosarcoma tumors express the ligand for PD-1 (PD-L1) and that tumor infiltrating CTL express PD-1, suggesting this pathway may limit CTL control of metastatic osteosarcoma in patients. PD-L1 is also expressed on the K7M2 osteosarcoma tumor cell line that establishes metastases in mice, and PD-1 is expressed on tumor infiltrating CTL during disease progression. Blockade of PD-1/PD-L1 interactions dramatically improves the function of osteosarcoma-reactive CTL in vitro and in vivo, and results in decreased tumor burden and increased survival in the K7M2 mouse model of metastatic osteosarcoma. My results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma should be pursued as a therapeutic strategy. However, PD-1/PD-L1 blockade treated mice still succumb to disease due to selection of PD-L1 mAb resistant tumor cells via up-regulation of other co-inhibitory T cell receptors. Combinational α-CTLA-4 and α-PD-L1 blockade treated mice were able to completely eradicate metastatic osteosarcoma, and generate immunity to disease. These results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma, although improves survival, may lead to tumor resistance, requiring combinational immunotherapies to combat and eradicate disease.
ContributorsLussier, Danielle (Author) / Blattman, Joseph N. (Thesis advisor) / Anderson, Karen (Committee member) / Goldstein, Elliott (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2015
135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132442-Thumbnail Image.png
Description
Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer,

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis director) / Mason, Hugh (Committee member) / Hariadi, Hugh (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
136975-Thumbnail Image.png
Description
Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the dengue 2 E protein is too small to be immunogenic by itself. In order for it to be displayed on a larger particle, it was inserted into the amino terminus of small hepatitis B surface antigen (HBsAg, S) coding sequence. To generate the recombinant MV vector and verify the efficiency of this concept, a reverse genetics system was used where the MV vectors express one or two additional transcription units to direct the assembly of hybrid HBsAg particles. Two types of recombinant measles virus were produced: pB(+)MVvac2(DIII-S,S)P and pB(+)MVvac2(DIII-S)N. Virus recovered from pB(+)MVvac2(DIII-S,S)P was viable. An ELISA assay was performed to demonstrate the expression and secretion of HBsAg. Supernatant from MVvac2(DIII-S,S)P infected cells confirmed that hybrid HBsAg-domain III particles with a density similar to traditional HBsAg particles were released. Characteristics of the subviral particle have been analyzed for the successful incorporation of domain III. The replication fitness of the recombinant MV was evaluated using multi-step growth kinetics and showed reduced replication fitness when compared to the parental strain MVvac2. This demonstrates that viral replication is hindered by the addition of the two inserts into MV genome. Further analysis of MVvac2(DIII-S)N is needed to justify immune response studies in a small animal model using both of the generated recombinant vectors.
ContributorsHarahap, Indira Saridewi (Author) / Reyes del Valle, Jorge (Thesis director) / Hogue, Brenda (Committee member) / Misra, Rajeev (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
133045-Thumbnail Image.png
Description
Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a

Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a need for developing a rapid biomarker to profile immunity to these viruses. The viral E7 oncogene is expressed in most HPV-associated cancers and anti-E7 antibodies can be detected in the blood of patients with cervical cancer. This research was focused on viral E7 oncogene expression to be used in development of low-cost point of care tests, enabling patients from low resource settings to detect the asymptotic stage of cervical cancer and be able to seek treatment early. In order to produce the E7 protein in vitro to measure antibody levels, GST tagged E7 genes from HPV 16, 18 and 45 species were inserted into the pDEST15 vector and expressed in E. coli BL21DE3 cells that were induced with 1mM of IPTG. The E7-GST fused expressed protein was then purified using glutathione beads and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein expression was 5.8 \u03bcg/ml for HPV 16E7 in 500 ml culture and for the 500 ml culture of HPV 18 E7 and 45 E7 were 10.5 \u03bcg/ml and 10.5 \u03bcg/ml for HPV 18E7 and 45E7 respectively. High yield values are showing high expression levels of GST-tagged E7 recombinant protein which can be used for serotyping a number of individuals. This shows that HPV E7 can be produced in large quantities that can potentially be used in point of care tests that can help identify women at risk of cervical cancer. In conclusion, the E7 protein produced in this study can potentially be used to induce humoral responses in patients\u2019 sera for understanding the immune response of cervical cancer.
ContributorsMakuyana, Ntombizodwa (Author) / Anderson, Karen (Thesis director) / Ewaisha, Radwa (Committee member) / Varsani, Arvind (Committee member) / Hou, Ching-Wen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates

Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates of measles and mumps since it was introduced.
Current methods for IgG antibody detection include enzyme immunoassays (EIA) such as the commercially available Diamedix Immunosimplicity® Measles IgG test kit and the Diamedix Immunosimplicity® Mumps IgG test kit. EIAs generally provide high sensitivity and strong specificity, however, there is a need for rapid screening of measles and mumps specific immunity in outbreak and resource-limited areas which could be solved by use a point-of-care (POC) platform.
This study aims to optimize a point-of-care device for the multiplexed detection of MeV, MuV, and RuV IgG antibodies in sera and to compare the sensitivity to commercial enzyme immunoassays. The IgG antibody levels to MeV and MuV were measured using EIA test kits for a total of 44 healthy serum samples. Of the samples, 6% were seronegative for MeV-specific IgG antibodies and 75% were seronegative for MuV-specific antibodies, showing low correlation of IgG antibody levels between both viruses.
To improve the sensitivity of the POC device, multiple conjugated fluorescent secondary antibodies were tested with different surface chemistries. Signal detection was measured using the pre-developed four-site slide reader. Preliminary data show that Nile Red microspheres provide robust signal detection and should be the secondary antibody of choice when sera are tested for IgG antibodies using the POC platform in future work.
ContributorsBharaj, Tirinder K. (Author) / Anderson, Karen (Thesis director) / Green, Alexander (Committee member) / Ewaisha, Radwa (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135617-Thumbnail Image.png
Description
Identifying immunoreactive cytotoxic T lymphocytes (CTLs) by current technologies (cytokine secretion, intracellular cytokine, ELISPOT, and MHC tetramer assays) is often difficult when probing for multiple target antigens. CTLs activate and induce apoptosis of pathogenic cells when T-cell receptors (TCRs) specifically bind to antigenic peptides and major histocompatibility complexes (pMHCs) presented

Identifying immunoreactive cytotoxic T lymphocytes (CTLs) by current technologies (cytokine secretion, intracellular cytokine, ELISPOT, and MHC tetramer assays) is often difficult when probing for multiple target antigens. CTLs activate and induce apoptosis of pathogenic cells when T-cell receptors (TCRs) specifically bind to antigenic peptides and major histocompatibility complexes (pMHCs) presented on the target cell’s surface. Flow cytometric MHC class I tetramer assays allow for the direct quantification and sorting of most CD8+ T lymphocytes whose TCRs recognize bound peptides, regardless of effector function. Class I tetramers are traditionally produced using BL21-DE3 E. coli expression, denaturation and folding in vitro, which is technically challenging, time-consuming, and low-throughput. We are developing an assay amenable to rapid, high-throughput screening of peptide libraries to characterize and quantitate antigen-specific CTLs in peripheral blood mononuclear cells (PBMCs). Baculovirus expression systems, utilizing host eukaryotic chaperones and isomerases, are capable of producing soluble, properly-folded protein complexes with high yields. The HLA-A*0201 heavy chain and beta-2-microglobulin genes were cloned into pIEx baculovirus expression vectors. Recombinant HLA-A*0201 and β2m viruses were synthesized using the BacMagic-3 DNA/pIEx method and transfected into Spodoptera frugiperda (Sf9) cells, and protein expression was confirmed by Western blot. To prepare T cells for testing, PBMCs from a healthy HLA-A2+ donor were collected and pulsed with DMSO control or CEF peptide pool (a mixture of CMV-, EBV-, and Flu-specific HLA class I epitopes). After 5 days, the CD8+ and CD8- fractions were sorted by MACS-based magnetic separation, and the frequency of FluM1-specific lymphocytes in the CD8+ populations was determined (0.1% of DMSO control vs. 0.772% of CEF-pulsed cells) using a commercial tetramer. We are optimizing HLA-A*0201 and β2m baculovirus co-infection ratios and evaluating the efficiency of intracellular MHC folding.
ContributorsRoesler, Alexander Scott (Author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05