Matching Items (4)
Filtering by

Clear all filters

134503-Thumbnail Image.png
Description
Recent data suggests that olfactory input is important for antennal lobe development in honey bees. Chronic association of a single odor to food resources during crucial stages of development results in delayed antennal lobe development for mature foraging bees. The antennal lobes of these bees instead closely resemble an immature

Recent data suggests that olfactory input is important for antennal lobe development in honey bees. Chronic association of a single odor to food resources during crucial stages of development results in delayed antennal lobe development for mature foraging bees. The antennal lobes of these bees instead closely resemble an immature network observed in young, newly emerged bees. Using an odor stimuli variance assay, learning and memory tests can be used to explore how well honey bees discriminate single odors within complex odor mixtures. Here we are validating two different odor mixtures, a Brassica rapa floral blend and a second replicate mixture composed of common molecularly dissimilar odors. Odors in each mixture are either held constant or varied in concentration over 16 conditioning trials. Subsequent memory tests are performed two hours later to observe the ability of bees to distinguish and recognize specific odor components in each mixture. So far in our assay we find high rates of generalization for both odor mixtures. In general, more bees responded to all odors in the replicate treatment group over the Brassica treatment group. Additionally, bees in the Brassica treatment group did not respond to the target odor. More data is being collected to validate this assay. In future studies, I propose to apply this behavioral assay to bees with an altered olfactory developmental in order to see the functional impacts of this chronic odor association treatment.
ContributorsHalby, Rachael (Author) / Smith, Brian (Thesis director) / Jernigan, Christopher (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134718-Thumbnail Image.png
Description
Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My

Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My research focuses on defining the relationship between increased ERK/MAPK signaling and its effects on the nervous system, specifically in the context of motor learning. Motor function depends on several neuroanatomically distinct regions, especially the spinal cord, cerebellum, striatum, and cerebral cortex. We tested whether hyperactivation of ERK/MAPK specifically in the cortex was sufficient to drive changes in motor function. We used a series of genetically modified mouse models and cre-lox technology to hyperactivate ERK/MAPK in the cerebral cortex. Nex:Cre/NeuroD6:Cre was employed to express a constitutively active MEK mutation throughout all layers of the cerebral cortex from an early stage of development. RBP4:Cre, caMEK only exhibited hyper activation in cortical glutamatergic neurons responsible for cortical output (neurons in layer V of the cerebral cortex). First, the two mouse strains were tested in an open field paradigm to assess global locomotor abilities and overall fitness for fine motor tasks. Next, a skilled motor reaching task was used to evaluate motor learning capabilities. The results show that Nex:Cre/NeuroD6:Cre, caMEK mutants do not learn the motor reaching task, although they performed normally on the open field task. Preliminary results suggest RBP4:Cre, caMEK mutants exhibit normal locomotor capabilities and a partial lack of learning. The difference in motor learning capabilities might be explained by the extent of altered connectivity in different regions of the corticospinal tract. Once we have identified the neuropathological effects of various layers in the cortex we will be able to determine whether therapeutic interventions are sufficient to reverse these learning defects.
ContributorsRoose, Cassandra Ann (Author) / Newbern, Jason M. (Thesis director) / Olive, Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135022-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine

Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine tyramine as an important factor underlying this form of learning in honey bees. We show that dsRNA targeted to disrupt the tyramine receptors, specifically affects latent inhibition but not excitatory associative conditioning. Our results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian (Thesis director) / Wang, Ying (Committee member) / Sinakevitch, Irina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12