Matching Items (2)
Filtering by

Clear all filters

134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
131112-Thumbnail Image.png
Description
Traumatic brain injury (TBI)—sudden impact or acceleration trauma to the head—is a major cause of death and disability worldwide and is particularly amplified in pediatric cases. TBI is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time where the brain undergoes cognitive development

Traumatic brain injury (TBI)—sudden impact or acceleration trauma to the head—is a major cause of death and disability worldwide and is particularly amplified in pediatric cases. TBI is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time where the brain undergoes cognitive development and brain injury-induced disruptions to these processes can lead to life-long debilitating morbidities. The aim of this study was to determine if exercising spatial and contextual memory circuits using a novel rehabilitation strategy called Peg Forest Rehabilitation (PFR) could mitigate the onset of injury-induced cognitive deficits in juvenile rats subjected to diffuse TBI. The PFR aims to synthesize neuroplasticity-based enrichment to improve cognitive outcomes after TBI. We hypothesized that PFR treatment would mitigate the onset of brain injury-induced cognitive deficits and reduce neuroinflammation. Juvenile male Sprague-Dawley rats (post-natal day 35) were subjected to diffuse traumatic brain injury via midline fluid percussion injury or a control surgery. One-week post-injury, rats were exposed to PFR or cage control exploration (15 min/day). PFR allowed free navigation through random configuration of the peg-filled arena for 10 days over 2 weeks. Control rats remained in home cages in the center of the arena with the peg-board removed for 15 min/day/10 days. One-week post-rehabilitation (one-month post-injury), cognitive performance was assessed for short-term (novel object recognition; NOR), long-term (novel location recognition; NLR), and working (temporal order recognition; TOR) memory performance, calculated as a discrimination index between novel and familiar objects. Tissue was collected for immunohistochemistry and stained for ionized calcium binding proteins (Iba-1) to visualize microglia morphology, and somatostatin. PFR attenuated TBI-induced deficits on the NOR task, where the TBI-PFR treatment group spent significantly more time with the novel object compared with the familiar (*p=0.0046). Regardless of rehabilitation, brain-injured rats had hyper-ramified microglia in the hypothalamus indicated by longer branch lengths and more endpoints per cell compared with uninjured shams. Analysis of somatostatin data is ongoing. In this study, passive, intermittent PFR that involved dynamic, novel spatial navigation, prevented TBI-induced cognitive impairment in adolescent rats. Spatial navigation training may have clinical efficacy and should be further investigated.
ContributorsAftab, Umar (Author) / Rowe, Rachel K. (Thesis director) / Newbern, Jason M. (Thesis director) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05