Matching Items (14)
Filtering by

Clear all filters

152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
156031-Thumbnail Image.png
Description
Approximately 2.8 million Americans seek medical care for traumatic brain injury (TBI) each year. Of this population, the majority are sufferers of diffuse TBI, or concussion. It is unknown how many more individuals decline to seek medical care following mild TBI. This likely sizeable population of un- or self-treated individuals

Approximately 2.8 million Americans seek medical care for traumatic brain injury (TBI) each year. Of this population, the majority are sufferers of diffuse TBI, or concussion. It is unknown how many more individuals decline to seek medical care following mild TBI. This likely sizeable population of un- or self-treated individuals combined with a lack of definitive biomarkers or objective post-injury diagnostics creates a unique need for practical therapies among diffuse TBI sufferers. Practical therapies stand to decrease the burden of TBI among those who would otherwise not seek treatment or do not meet clinical diagnostic criteria upon examination. For this unique treatment niche, practical therapies for TBI are defined as having one or more of the following qualities: common availability, easy administration, excellent safety profile, and cost-effectiveness. This dissertation identifies and critically examines the efficacy of four classes of practical treatments in improving rodent outcome from experimental diffuse traumatic brain injury.

Over-the-counter (OTC) analgesics, omega-3 fatty acids, specialized pro-resolving mediators (SPMs), and remote ischemic conditioning (RIC) were administered before or following midline fluid percussion injury. Behavioral, histological, and molecular analyses were used to assess treatment effects on functional outcome and secondary injury progression. Acute administration of common OTC analgesics had little effect on post-injury outcome in mice. Dietary supplementation with omega-3 fatty acid docosahexaenoic acid (DHA) prior to or following diffuse TBI significantly reduced injury-induced sensory sensitivity and markers of neuroinflammation with no effect on spatial learning. Intraperitoneal administration of omega-3 fatty acid-derived SPM resolvin E1 significantly increased post-injury sleep and suppressed microglial activation. Aspirin-triggered (AT) resolvin D1 administration improved both motor and cognitive outcome following diffuse TBI. RIC treatment in mice demonstrated little effect on functional outcome from diffuse TBI. Untargeted proteomic analysis of plasma samples from RIC-treated mice was used to identify candidate molecular correlates of RIC. Identification of these candidates represents a vital first step in elucidating the neuroprotective mechanisms underlying RIC. The overall findings suggest that omega-3 fatty acid supplementation, SPM administration, and RIC may serve as effective practical therapies to reduce the somatic, cognitive, and neurological burden of diffuse TBI felt by millions of Americans.
ContributorsHarrison, Jordan L (Author) / Lifshitz, Jonathan (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Willyerd, Frederick A (Committee member) / Pirrotte, Patrick (Committee member) / Arizona State University (Publisher)
Created2017
Description
Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential

Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential surgical complications. In this regard, there is an urgent need for developing new effective therapeutic strategies to induce regeneration and restore the loss contractility of infarcted myocardium. Over the past decades, regenerative medicine has emerged as a promising strategy to develop scaffold-free cell therapies and scaffold-based cardiac patches as potential approaches for MI treatment. Despite the progress, there are still critical shortcomings associated with these approaches regarding low cell retention, lack of global cardiomyocytes (CMs) synchronicity, as well as poor maturation and engraftment of the transplanted cells within the native myocardium. The overarching objective of this dissertation was to develop two classes of nanoengineered cardiac patches and scaffold-free microtissues with superior electrical, structural, and biological characteristics to address the limitations of previously developed tissue models. An integrated strategy, based on micro- and nanoscale technologies, was utilized to fabricate the proposed tissue models using functionalized gold nanomaterials (GNMs). Furthermore, comprehensive mechanistic studies were carried out to assess the influence of conductive GNMs on the electrophysiology and maturity of the engineered cardiac tissues. Specifically, the role of mechanical stiffness and nano-scale topographies of the scaffold, due to the incorporation of GNMs, on cardiac cells phenotype, contractility, and excitability were dissected from the scaffold’s electrical conductivity. In addition, the influence of GNMs on conduction velocity of CMs was investigated in both coupled and uncoupled gap junctions using microelectrode array technology. Overall, the key contributions of this work were to generate new classes of electrically conductive cardiac patches and scaffold-free microtissues and to mechanistically investigate the influence of conductive GNMs on maturation and electrophysiology of the engineered tissues.
ContributorsNavaei, Ali (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Migrino, Raymond Q. (Committee member) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2018
156801-Thumbnail Image.png
Description
Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD) are the leading causes of early onset dementia. There are currently no ways to slow down progression, to prevent or cure AD and FTD. Both AD and FTD share a lot of the symptoms and pathology. Initial symptoms such as confusion, memory loss,

Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD) are the leading causes of early onset dementia. There are currently no ways to slow down progression, to prevent or cure AD and FTD. Both AD and FTD share a lot of the symptoms and pathology. Initial symptoms such as confusion, memory loss, mood swings and behavioral changes are common in both these dementia subtypes. Neurofibrillary tau tangles and intraneuronal aggregates of TAR DNA Binding Protein 43 (TDP-43) are also observed in both AD and FTD. Hence, FTD cases are often misdiagnosed as AD due to a lack of accurate diagnostics. Prior to the formation of tau tangles and TDP-43 aggregates, tau and TDP-43 exist as intermediate protein variants which correlate with cognitive decline and progression of these neurodegenerative diseases. Effective diagnostic and therapeutic agents would selectively recognize these toxic, disease-specific variants. Antibodies or antibody fragments such as single chain antibody variable domain fragments (scFvs), with their diverse binding capabilities, can aid in developing reagents that can selectively bind these protein variants. A combination of phage display library and Atomic Force Microscopy (AFM)-based panning was employed to identify antibody fragments against immunoprecipitated tau and immunoprecipitated TDP-43 from human postmortem AD and FTD brain tissue respectively. Five anti-TDP scFvs and five anti-tau scFvs were selected for characterization by Enzyme Linked Immunosorbent Assays (ELISAs) and Immunohistochemistry (IHC). The panel of scFvs, together, were able to identify distinct protein variants present in AD but not in FTD, and vice versa. Generating protein variant profiles for individuals, using the panel of scFvs, aids in developing targeted diagnostic and therapeutic plans, gearing towards personalized medicine.
ContributorsVenkataraman, Lalitha (Author) / Sierks, Michael R (Thesis advisor) / Dunckley, Travis (Committee member) / Oddo, Salvatore (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2018
156942-Thumbnail Image.png
Description
Estrogen-containing hormone therapy (HT) is approved for treatment of symptoms associated with menopause by the Food and Drug Administration. A common estrogen used in HT is 17β-estradiol (E2). Rodent models of menopause, and some clinical work as well, suggest a cognitively-beneficial role of E2. However, as of the 2017 statement

Estrogen-containing hormone therapy (HT) is approved for treatment of symptoms associated with menopause by the Food and Drug Administration. A common estrogen used in HT is 17β-estradiol (E2). Rodent models of menopause, and some clinical work as well, suggest a cognitively-beneficial role of E2. However, as of the 2017 statement released by the North American Menopause Society, HT is not currently advised for use as cognitive therapy in healthy, menopausal women, given that the data so far from existing clinical studies are not yet definitive. Indeed, the delivery of E2 treatment can be optimized to yield more consistent results on cognitive function, particularly considering that exogenously administered E2 gets rapidly metabolized and cleared from the body. Further, E2-containing HT must include a progestogen if prescribed to women with a uterus to oppose its undesired uterine stimulating effects, such as increased endometrial hyperplasia and cancer risks. Studies have shown that the addition of a progestogen to E2 treatment can attenuate the effects of E2 on cognition and brain variables associated with cognitive function. Thus, a brain-specific delivery platform of E2 treatment that would minimize the hormone’s effects in the periphery while maintaining the beneficial cognitive effects is desirable. To achieve this goal, my dissertation work bridged two distinct scientific fields – behavioral neuroendocrinology and polymeric drug delivery – with the overarching aim of targeting the delivery of E2 to the brain to achieve maximal cognitively-beneficial effects with minimal undesired uterine stimulation. This aim was addressed via three distinct delivery strategies: 1) combining E2 with a cognitively-beneficial progestogen, 2) encapsulating E2 in polymeric nanoparticles, and 3) solubilizing E2 using cyclodextrins for intranasal administration. Findings revealed that although all E2-containing treatments increased uterine horn weights, a marker of uterine stimulation, in middle-aged ovariectomized rats, some E2 treatment formulations yielded memory improvements, others were neutral in their effects on memory, and some impaired memory. Together, data from this dissertation set the stage for targeted E2 delivery research to optimize the cognitive therapeutic effects of E2 in the context of menopause while minimizing peripheral burden, leading to translationally relevant clinical implications for women’s health.
ContributorsPrakapenka, Alesia (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Stabenfeldt, Sarah (Committee member) / Sirianni, Rachael (Committee member) / Arizona State University (Publisher)
Created2018
135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155402-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme that plays important roles in neuronal cells including mediating actin organization and dendritic spine morphogenesis. The ROCK inhibitor Fasudil has been shown to increase learning and working memory in aged rats, but another ROCK inhibitor, Y27632, was shown to impair learning and memory. I am interested in exploring how these, and other ROCK inhibitors, may be acting mechanistically to result in very different outcomes in treated animals.

Preliminary research on thirteen different ROCK inhibitors provides evidence that while Fasudil and a novel ROCK inhibitor, T343, decrease tau phosphorylation in vitro, Y27632 increases tau phosphorylation at a low dose and decreases at a high dose. Meanwhile, novel ROCK inhibitor T299 increases tau phosphorylation at a high dosage.

Further, an in vivo study using triple transgenic AD mice provides evidence that Fasudil improves reference memory and fear memory in both transgenic and wild-type mice, while Y27632 impairs reference memory in transgenic mice. Fasudil also decreases tau phosphorylation and Aβ in vivo, while Y27632 significantly increases the p-tau to total tau ratio.
ContributorsTurk, Mari (Author) / Huentelman, Matt (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Jensen, Kendall (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2017
135506-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade,

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.
ContributorsGoddery, Emma Nicole (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or diagnostic agents, either on the surface or within the core. NP size is an important characteristic as it directly impacts clearance and where the particles can travel and bind in the body. To that end, the typical target size for NPs is 30-200 nm for the majority of applications. Fabricating NPs using the typical techniques such as drop emulsion, microfluidics, or traditional nanoprecipitation can be expensive and may not yield the appropriate particle size. Therefore, a need has emerged for low-cost fabrication methods that allow customization of NP physical characteristics with high reproducibility. In this study we manufactured a low-cost (<$210), open-source syringe pump that can be used in nanoprecipitation. A design of experiments was utilized to find the relationship between the independent variables: polymer concentration (mg/mL), agitation rate of aqueous solution (rpm), and injection rate of the polymer solution (mL/min) and the dependent variables: size (nm), zeta potential, and polydispersity index (PDI). The quarter factorial design consisted of 4 experiments, each of which was manufactured in batches of three. Each sample of each batch was measured three times via dynamic light scattering. The particles were made with PLLA-mPEG dissolved in a 50% dichloromethane and 50% acetone solution. The polymer solution was dispensed into the aqueous solution containing 0.3% polyvinyl alcohol (PVA). Data suggests that none of the factors had a statistically significant effect on NP size. However, all interactions and relationships showed that there was a negative correlation between the above defined input parameters and the NP size. The NP sizes ranged from 276.144 ± 14.710 nm at the largest to 185.611 ± 15.634 nm at the smallest. In conclusion, the low-cost syringe pump nanoprecipitation method can achieve small sizes like the ones reported with drop emulsion or microfluidics. While there are trends suggesting predictable tuning of physical characteristics, significant control over the customization has not yet been achieved.

ContributorsDalal, Dhrasti (Author) / Stabenfeldt, Sarah (Thesis director) / Wang, Kuei-Chun (Committee member) / Flores-Prieto, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description
Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological and neurobiological changes. Due to the nature of the developing cortex, it is important to understand how a pediatric brain recovers from a severe TBI (sTBI) compared to an adult. Investigating major cortical and cellular changes after sTBI in a pediatric model can elucidate why pediatrics go on to suffer more neurological damage than an adult after head trauma. To model pediatric sTBI, I use controlled cortical impact (CCI) in juvenile mice (P22). First, I show that by 14 days after injury, animals begin to show recurrent, non-injury induced, electrographic seizures. Also, using whole-cell patch clamp, layer V pyramidal neurons in the peri-injury area show no changes except single-cell excitatory and inhibitory synaptic bursts. These results demonstrate that CCI induces epileptiform activity and distinct synaptic bursting within 14 days of injury without altering the intrinsic properties of layer V pyramidal neurons. Second, I characterized changes to the cortical inhibitory network and how fast-spiking (FS) interneurons in the peri-injury region function after CCI. I found that there is no loss of interneurons in the injury zone, but a 70% loss of parvalbumin immunoreactivity (PV-IR). FS neurons received less inhibitory input and greater excitatory input. Finally, I show that the cortical interneuron network is also affected in the contralateral motor cortex. The contralateral motor cortex shows a loss of interneurons and loss of PV-IR. Contralateral FS neurons in the motor cortex synaptically showed greater excitatory input and less inhibitory input 14 days after injury. In summary, this work demonstrates that by 14 days after injury, the pediatric cortex develops epileptiform activity likely due to cortical inhibitory network dysfunction. These findings provide novel insight into how pediatric cortical networks function in the injured brain and suggest potential circuit level mechanisms that may contribute to neurological disorders as a result of TBI.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Newbern, Jason (Thesis advisor) / Neisewander, Janet (Committee member) / Qiu, Shenfeng (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2015