Matching Items (22)
Filtering by

Clear all filters

135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136253-Thumbnail Image.png
Description
The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin,

The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin, fibronectin, and vitronectin) and vascular endothelial growth factor (VEGF) play a role in mediating NPSC behavior through vasophillic interactions. This project attempts to uncover potential VEGF-ECM crosstalk in mediating migration and proliferation. To investigate migration, neurospheres were seeded on ECM-coated wells supplemented with VEGF and without VEGF, and neural outgrowth was measured at days 0, 1, 3, and 8 using differential interference contrast microscopy. Furthermore, single-cell NPSCs were seeded on ECM-coated Transwell membranes with VEGF supplemented media on one side and without VEGF to look at chemotactic migration. Migrated NPSCs were visualized with DAPI nuclear stain and imaged with an inverted fluorescent microscope. To investigate NPSC proliferation, NPSCs were seeded on ECM coated plates as in the radial migration assay and visualized with EdU on day 8. Total proliferation was measured by seeding NPSCs on ECM coated 96-well plates and incubating them with MTT on days 3 and 6. Proliferation was measured using a spectrophotometer at 630nm and 570nm wavelengths. It was found that VEGF-laminin crosstalk synergistically increased radial migration, but may not play a role in chemotactic migration. Understanding the mechanisms behind VEGF-laminin crosstalk in NPSC proliferation and migration may provide crucial information for the design of stem cell transplantation therapies in the future.
ContributorsMillar-Haskell, Catherine Susan (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133594-Thumbnail Image.png
Description
Traumatic brain injury is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time in development where the body and brain undergoes puberty, which not only includes reproductive maturation, but also adult social and cognitive development. Brain-injury-induced disruptions can cause secondary inflammation processes and

Traumatic brain injury is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time in development where the body and brain undergoes puberty, which not only includes reproductive maturation, but also adult social and cognitive development. Brain-injury-induced disruptions can cause secondary inflammation processes and as a result, pediatric TBI can lead to significant life-long and debilitating morbidities that continue long after initial injury. In this study, neuroinflammation following diffuse brain injury was explored in prepubertal and peripubertal rats using an adapted method of midline fluid percussion injury (mFPI) for juvenile rats to further understand the relationship between pediatric TBI and puberty disruption due to endocrine dysfunction. We expect the adapted mFPI model to be effective in producing diffuse, moderate brain injury in juvenile rats and hypothesize that pre-pubertal rats (PND35) will have increased neuroinflammation compared to peri-pubertal rats (PND17) and shams because of the potential neuroprotective nature of sex steroids. Male Sprague-Dawley rats (n=90) were subjected to either a diffuse midline fluid percussion injury (mFPI) or sham injury at post-natal day (PND) 17 (pre-puberty) or PND35 (peri-puberty). Animals were sacrificed at different time points defined as days post injury (DPI) including 1DPI, 7DPI and 25DPI to represent both acute and chronic time points, allowing for comparisons within groups (injury vs. sham) and across groups (PND17 vs PND35). Body weight of the rats was measured postoperatively at various time points throughout the study to follow recovery. Tissue was collected and subjected to Heamatoxylin and Eosin (H&E) stain to visualize histology and evaluate the application of diffuse mFPI to juvenile rats. In addition, tissue underwent immunohistochemical analysis using 3,3'-diaminobenzidine (DAB) to stain for ionized calcium binding proteins (Iba1) in order to assess injury-related neuroinflammation in the form of microglia activation. Diffuse brain injury using the mFPI model did not affect rat body weight or cause overt cell death, suggesting adaption of the adult mFPI model for juvenile rats is representative of moderate diffuse brain injury. In addition, diffuse TBI lead to morphological changes in microglia suggesting there is an increased inflammatory response following initial insult, which may directly contribute to improper activation of pubertal timing and progression in adolescent children affected. Since there is little literature on the full effects of puberty dysfunction following TBI in the pediatric population, there is a significant need to further assess this area in order to develop improved interventions and potential therapies for this affected population.
ContributorsNewbold, Kelsey Bevier (Author) / Newbern, Jason (Thesis director) / Rowe, Rachel (Committee member) / Ortiz, J. Bryce (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133530-Thumbnail Image.png
Description
Neuroinflammation is an important secondary injury response occurring after traumatic brain injury (TBI). Anxiety-like disorders are commonly exacerbated after TBI and are mediated through the amygdala; however, the amygdala remains understudied despite its important contribution in processing emotional and stressful stimuli. Therefore, we wanted to study neuroinflammation after experimental TBI

Neuroinflammation is an important secondary injury response occurring after traumatic brain injury (TBI). Anxiety-like disorders are commonly exacerbated after TBI and are mediated through the amygdala; however, the amygdala remains understudied despite its important contribution in processing emotional and stressful stimuli. Therefore, we wanted to study neuroinflammation after experimental TBI using midline fluid percussion in rodent models. We assessed microglia morphology over time post-injury in two circuit related nuclei of the amygdala, the basolateral amygdala (BLA) and central amygdala of the nucleus (CeA), using skeletal analysis. We also looked at silver staining and glial fibrillary acidic protein (GFAP) to evaluate the role of neuropathology and astrocytosis to evaluate for neuroinflammation in the amygdala. We hypothesized that experimental diffuse TBI leads to microglial activation in the BLA-CeA circuitry over time post-injury due to changes in microglial morphology and increased astrocytosis in the absence of neuropathology. Microglial cell count was found to decrease in the BLA at 1 DPI before returning to sham levels by 28 DPI. No change was found in the CeA. Microglial ramification (process length/cell and endpoints/cell) was found to decrease at 1DPI compared to sham in the CeA, but not in the BLA. Silver staining and GFAP immunoreactivity did not find any evidence of neurodegeneration or activated astrocytes in the respectively. Together, these data indicate that diffuse TBI does not necessarily lead to the same microglial response in the amygdala nuclei, although an alternative mechanism for a neuroinflammatory response in the CeA likely contributes to the widespread neuronal and circuit dysfunction that occurs after TBI.
ContributorsHur, Yerin (Author) / Newbern, Jason (Thesis director) / Thomas, Theresa Currier (Committee member) / Beitchman, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132852-Thumbnail Image.png
Description
Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs)

Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs) have been repurposed. SPs are composed of a poly(N-isopropylacrylamide-co-acrylic-acid) microgel, conjugated with a fibrin-specific antibody and are biomimetic in their ability to deform and collapse within a fibrin matrix. The objective of this study is to diminish coagulopathy with a single, intravenous injection of SPs, and subsequently decrease neuropathologies. TBI was modeled in animal cohorts using the well-established controlled cortical impact and SPs were injected 2-3 hours post-injury. Control cohorts received no injection. Brain tissue was harvested at acute (24h) and delayed (7 days) time points post-TBI, and fluorescently imaged to quantify reactive astrocytes (GFAP+), microglial morphology and presence (Iba1+), and tissue lesion spared. SP-treatment resulted in significant reduction of GFAP expression at 7 days post-TBI. Furthermore, SP-treatment significantly reduced the percent difference from 24h to 7 days in microglia/macrophage per field compared to the control. For microglial morphology, SP-treated cohorts observed a significant percent difference in endpoints per soma from 24h to 7 days compared to untreated cohorts. However, microglial branch length significantly decreased in percent difference from 24h to 7 days when compared to the control. Finally, tissue sparing did not significantly decrease between 24h and 7 day for SP-treated cohorts as was observed in untreated cohorts, implying inhibition of delayed necrosis. Overall, these results suggest decreased neuroinflammation by 7 days, supporting SPs as potentially therapeutic post-TBI.
ContributorsTodd, Jordan Cecile (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133254-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury

Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury lasts from hours to months after the initial injury and worsens the primary insult, creating a greater area of tissue damage and cell death. Many current treatments focus on lessening the severity of secondary injury. Secondary injury results from the cyclical nature of tissue damage. Inflammatory pathways cause damage to tissue, which in turn reinforces inflammation. Since many inflammatory pathways are interconnected, targeting individual products within these pathways is impractical. A target at the beginning of the pathway, such as a receptor, must be chosen to break the cycle. This project aims to identify novel nanobodies that could temporarily inactivate the CD36 receptor, which is a receptor found on many immune and endothelial cells. CD36 initiates and perpetuates the immune system's inflammatory responses. By inactivating this receptor temporarily, inflammation and immune cell entry could be lessened, and therefore secondary injury could be attenuated. This project utilized phage display as a method of nanobody selection. The specific phage library utilized in this experiment consists of human heavy chain (V_H) segments, also known as domain antibodies (dAbs), displayed on M13 filamentous bacteriophage. Phage display mimics the process of immune selection. The target is bound to a well as a means of displaying it to the phage. The phage library is then incubated with the target to allow antibodies to bind. After, the well is washed thoroughly to detach any phage that are not strongly bound. The remaining phage are then amplified in bacteria and run again through the same assay to select for mutations that resulted in higher affinity binding. This process, called biopanning, was performed three times for this project. After biopanning, the library was sequenced using Next Generation sequencing (NGS). This platform enables the entire library to be sequenced, as opposed to traditional Sanger sequencing, which can only sequence single select clones at a time thereby limiting population sampling. This type of genetic sequencing allows trends in the complementarity determining regions (CDRs) of the domain antibody library to be analyzed, using bioinformatics programs such as RStudio, FastAptamer, and Swiss Model. Ultimately, two nanobody candidates were identified for the CD36 receptor.
ContributorsLundgreen, Kendall (Author) / Stabenfeldt, Sarah (Thesis director) / Ugarova, Tatiana (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative brain disease that results from repetitive brain trauma causing brain structure, personality, behavioral, and cognitive changes. CTE is currently undiagnosable and untreatable in living patients. This thesis investigates research surrounding CTE and presents a comparative discussion of the advantages and disadvantages of current

Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative brain disease that results from repetitive brain trauma causing brain structure, personality, behavioral, and cognitive changes. CTE is currently undiagnosable and untreatable in living patients. This thesis investigates research surrounding CTE and presents a comparative discussion of the advantages and disadvantages of current diagnostic methods used for other neurodegenerative diseases that may be useful for the diagnosis of CTE.
ContributorsBlair, Sierra (Co-author) / Blair, Taylor (Co-author) / Brafman, David (Thesis director) / Stabenfeldt, Sarah (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12