Matching Items (19)
Filtering by

Clear all filters

135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136253-Thumbnail Image.png
Description
The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin,

The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin, fibronectin, and vitronectin) and vascular endothelial growth factor (VEGF) play a role in mediating NPSC behavior through vasophillic interactions. This project attempts to uncover potential VEGF-ECM crosstalk in mediating migration and proliferation. To investigate migration, neurospheres were seeded on ECM-coated wells supplemented with VEGF and without VEGF, and neural outgrowth was measured at days 0, 1, 3, and 8 using differential interference contrast microscopy. Furthermore, single-cell NPSCs were seeded on ECM-coated Transwell membranes with VEGF supplemented media on one side and without VEGF to look at chemotactic migration. Migrated NPSCs were visualized with DAPI nuclear stain and imaged with an inverted fluorescent microscope. To investigate NPSC proliferation, NPSCs were seeded on ECM coated plates as in the radial migration assay and visualized with EdU on day 8. Total proliferation was measured by seeding NPSCs on ECM coated 96-well plates and incubating them with MTT on days 3 and 6. Proliferation was measured using a spectrophotometer at 630nm and 570nm wavelengths. It was found that VEGF-laminin crosstalk synergistically increased radial migration, but may not play a role in chemotactic migration. Understanding the mechanisms behind VEGF-laminin crosstalk in NPSC proliferation and migration may provide crucial information for the design of stem cell transplantation therapies in the future.
ContributorsMillar-Haskell, Catherine Susan (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
132475-Thumbnail Image.png
Description
The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is vital for a patient’s recovery of motor function which is time demanding and taxing on the physical therapist. Wearable robotics have been proven to improve functional outcomes in gait rehabilitation by providing controlled high dosage and high-intensity training. Accurate control strategies for assistive robotic exoskeletons are vital for repetitive high precisions assistance for cerebral plasticity to occur.

This thesis presents a preliminary determination and design of a control algorithm for an assistive ankle device developed by the ASU RISE Laboratory. The assistive ankle device functions by compressing a spring upon heel strike during gait, remaining compressed during mid-stance and then releasing upon initiation of heel-off. The relationship between surface electromyography and ground reactions forces were used for identification of user-initiated heel-off. The muscle activation of the tibialis anterior combined with the ground reaction forces of the heel pressure sensor generated potential features that will be utilized in the revised control algorithm for the assistive ankle device. Work on this project must proceed in order to test and validate the revised control algorithm to determine its accuracy and precision.
ContributorsGaytan-Jenkins, Daniel Rinaldo (Author) / Zhang, Wenlong (Thesis director) / Tyler, Jamie (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
132852-Thumbnail Image.png
Description
Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs)

Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs) have been repurposed. SPs are composed of a poly(N-isopropylacrylamide-co-acrylic-acid) microgel, conjugated with a fibrin-specific antibody and are biomimetic in their ability to deform and collapse within a fibrin matrix. The objective of this study is to diminish coagulopathy with a single, intravenous injection of SPs, and subsequently decrease neuropathologies. TBI was modeled in animal cohorts using the well-established controlled cortical impact and SPs were injected 2-3 hours post-injury. Control cohorts received no injection. Brain tissue was harvested at acute (24h) and delayed (7 days) time points post-TBI, and fluorescently imaged to quantify reactive astrocytes (GFAP+), microglial morphology and presence (Iba1+), and tissue lesion spared. SP-treatment resulted in significant reduction of GFAP expression at 7 days post-TBI. Furthermore, SP-treatment significantly reduced the percent difference from 24h to 7 days in microglia/macrophage per field compared to the control. For microglial morphology, SP-treated cohorts observed a significant percent difference in endpoints per soma from 24h to 7 days compared to untreated cohorts. However, microglial branch length significantly decreased in percent difference from 24h to 7 days when compared to the control. Finally, tissue sparing did not significantly decrease between 24h and 7 day for SP-treated cohorts as was observed in untreated cohorts, implying inhibition of delayed necrosis. Overall, these results suggest decreased neuroinflammation by 7 days, supporting SPs as potentially therapeutic post-TBI.
ContributorsTodd, Jordan Cecile (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135738-Thumbnail Image.png
Description
The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS),

The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS), a linear dynamic range of glutamate was detected with a slope of 36.604 z/ohm/[pg/mL], a lower detection limit at 12.417 pg/mL, correlation of 0.97, and an optimal binding frequency of 117.20 Hz. After running through a frequency sweep the binding frequency was determined based on the highest consistent reproducibility and slope. The sensor was found to be specific against literature researched non-targets glucose, albumin, and epinephrine and working in dilutions of whole blood up to a concentration of 25%. With the implementation of Nafion, the sensor had a 250% improvement in signal and 155% improvement in correlation in 90% whole blood, illustrating the promise of a working blood sensor. Future work includes longitudinal studies and utilizing mesoporous carbon as the immobilization platform and incorporating this as part of a continuous, multiplexed blood sensor with glucose oxidase.
ContributorsLam, Alexandria Nicole (Author) / LaBelle, Jeffrey (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135506-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade,

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.
ContributorsGoddery, Emma Nicole (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05