Matching Items (4)
Filtering by

Clear all filters

133393-Thumbnail Image.png
Description
Artificial intelligence (AI) is a burgeoning technology, industry, and field of study. While interest levels regarding its applications in marketing have not yet translated into widespread adoption, AI holds tremendous potential for vastly altering how marketing is done. As such, AI in marketing is a crucial topic to research. By

Artificial intelligence (AI) is a burgeoning technology, industry, and field of study. While interest levels regarding its applications in marketing have not yet translated into widespread adoption, AI holds tremendous potential for vastly altering how marketing is done. As such, AI in marketing is a crucial topic to research. By analyzing its current applications, its potential use cases in the near future, how to implement it and its areas for improvement, we can achieve a high-level understanding of AI's long-term implications in marketing. AI offers an improvement to current marketing tactics, as well as entirely new ways of creating and distributing value to customers. For example, programmatic advertising and social media marketing can allow for a more comprehensive view of customer behavior, predictive analytics, and deeper insights through integration with AI. New marketing tools like biometrics, voice, and conversational user interfaces offer novel ways to add value for brands and consumers alike. These innovations all carry similar characteristics of hyper-personalization, efficient spending, scalable experiences, and deep insights. There are important issues that need to be addressed before AI is extensively implemented, including the potential for it to be used maliciously, its effects on job displacement, and the technology itself. The recent progression of AI in marketing is indicative that it will be adopted by a majority of companies soon. The long-term implications of vast implementation are crucial to consider, as an AI-powered industry entails fundamental changes to the skill-sets required to thrive, the way marketers and brands work, and consumer expectations.
ContributorsCannella, James (Author) / Ostrom, Amy (Thesis director) / Giles, Charles (Committee member) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133413-Thumbnail Image.png
Description
Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on modeling catastrophes. Setting reserves for catastrophe losses is difficult due to their unpredictable and often long-tailed nature. Determining loss development factors (LDFs) to estimate the ultimate loss amounts for catastrophe events is one method for setting reserves. In an attempt to aid Company XYZ set more accurate reserves, the research conducted focuses on estimating LDFs for catastrophes which have already occurred and have been settled. Furthermore, the research describes the process used to build a linear model in R to estimate LDFs for Company XYZ's closed catastrophe claims from 2001 \u2014 2016. This linear model was used to predict a catastrophe's LDFs based on the age in weeks of the catastrophe during the first year. Back testing was also performed, as was the comparison between the estimated ultimate losses and actual losses. Future research consideration was proposed.
ContributorsSwoverland, Robert Bo (Author) / Milovanovic, Jelena (Thesis director) / Zicarelli, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131337-Thumbnail Image.png
Description
Apple’s HomeKit framework centralizes control of smart home devices and allows users to create home automations based on predefined rules. For example, a user can add a rule to turn off all the lights in their house whenever they leave. Currently, these rules must be added through a graphical user

Apple’s HomeKit framework centralizes control of smart home devices and allows users to create home automations based on predefined rules. For example, a user can add a rule to turn off all the lights in their house whenever they leave. Currently, these rules must be added through a graphical user interface provided by Apple or a third-party app on iOS. This thesis describes how a text-based language provides users with a more expressive means of creating complex home automations and successfully implements such a language. Rules created using this text-based format are parsed and interpreted into rules that can be added directly into HomeKit. This thesis also explores how security features should be implemented with this text-based approach. Since automations are run by the system without user interaction, it is important to consider how the system itself can provide functionality to address the unintended consequences that may result from running an automation. This is especially important for the text-based approach since its increase in expressiveness makes it easier for a user to make a mistake in programming that leads to a security concern. The proposed method for preventing unintended side effects is using a simulation to run every automation prior to actually running the automation on real-world devices. This approach allows users to code some conditions that must be satisfied in order for the automation to run on devices in the home. This thesis describes the creation of such a program that successfully simulates every device in the home. There were limitations, however, with Apple's HomeKit framework, which made it impractical to match the state of simulated devices to real devices in the home. Without being able to match the current state of the home to the current state of the simulation, this method cannot satisfy the goal of ensuring that certain adverse effects will not occur as a result of automations. Other smart home control platforms that provide more extensibility could be used to create this simulation-based security approach. Perhaps as Apple continues to open up their HomeKit platform to developers, this approach may be feasible within Apple's ecosystem at some point in the future.
ContributorsSharp, Trevor Ryan (Co-author) / Sharp, Trevor (Co-author) / Bazzi, Rida (Thesis director) / Doupe, Adam (Committee member) / Economics Program in CLAS (Contributor) / Department of Management and Entrepreneurship (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165923-Thumbnail Image.png
Description

The objective of this study is to build a model using R and RStudio that automates ratemaking procedures for Company XYZ’s actuaries in their commercial general liability pricing department. The purpose and importance of this objective is to allow actuaries to work more efficiently and effectively by using this model

The objective of this study is to build a model using R and RStudio that automates ratemaking procedures for Company XYZ’s actuaries in their commercial general liability pricing department. The purpose and importance of this objective is to allow actuaries to work more efficiently and effectively by using this model that outputs the results they otherwise would have had to code and calculate on their own. Instead of spending time working towards these results, the actuaries can analyze the findings, strategize accordingly, and communicate with business partners. The model was built from R code that was later transformed to Shiny, a package within RStudio that allows for the build-up of interactive web applications. The final result is a Shiny app that first takes in multiple datasets from Company XYZ’s data warehouse and displays different views of the data in order for actuaries to make selections on development and trend methods. The app outputs the re-created ratemaking exhibits showing the resulting developed and trended loss and premium as well as the experience-based indicated rate level change based on prior selections. The ratemaking process and Shiny app functionality will be detailed in this report.

ContributorsGilkey, Gina (Author) / Zicarelli, John (Thesis director) / Milovanovic, Jelena (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05