Matching Items (3)

Filtering by

Clear all filters

136790-Thumbnail Image.png

Association of olfactory learning with cuticular hydrocarbon discrimination in the ant Camponotus floridanus

Description

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.

Contributors

Agent

Created

Date Created
2014-05

136060-Thumbnail Image.png

The Sensory Basis of Olfactory Detection in the Dampwood Termite, Zootermopsis Nevadensis

Description

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.

Contributors

Agent

Created

Date Created
2015-05

161721-Thumbnail Image.png

Imaging and Targeting with Optics and Acoustics

Description

This thesis describes the development, characterization, and application of new biomedical technologies developed around the photoacoustic effect. The photoacoustic effect is defined as optical absorption-based generation of ultrasound and provides the foundation for a unique method of imaging and molecular

This thesis describes the development, characterization, and application of new biomedical technologies developed around the photoacoustic effect. The photoacoustic effect is defined as optical absorption-based generation of ultrasound and provides the foundation for a unique method of imaging and molecular detection. The range of applications of the photoacoustic effect have not yet been fully explored. Photoacoustic endoscopy (PAE) has emerged as a minimally invasive tool for imaging internal organs and tissues. One of the main themes of this dissertation involves the first reported dual-intrauterine photoacoustic and ultrasound deep-tissue imaging endoscope. This device was designed to enable physicians at the point-of-care to better elucidate overall gynecological health, by imaging the lining of the human uterus. Intrauterine photoacoustic endoscopy is made possible due to the small diameter of the endoscope (3mm), which allows for complete, 360-degree organ analysis from within the uterine cavity. In certain biomedical applications, however, further minimization is necessary. Sufficiently small diameter endoscopes may allow for the possibility of applying PAE in new areas. To further miniaturize the diameter of our endoscopes, alternative imaging probe designs were investigated. The proposed PAE architecture utilizes a hollow optical waveguide to allow for concentric guiding of both light and sound. This enables imaging depths of up to several millimeters into animal tissue while maintaining an outer diameter of roughly 1mm. In the final focus of this dissertation, these waveguides are further investigated for use in micropipette electrodes, common in the field of single cell electrophysiology. Pulsed light is coupled with these electrodes providing real-time photoacoustic feedback, useful in navigation towards intended targets. Lastly, fluorescence can be generated and collected at the micropipette aperture by utilizing an intra-electrode tapered optical fiber. This allows for a targeted robotic approach to labeled neurons that is independent of microscopy.

Contributors

Agent

Created

Date Created
2021