Matching Items (3)
Filtering by

Clear all filters

158534-Thumbnail Image.png
Description
ABSTRACT

Background. College students’ modifiable health behaviors, including unhealthful eating patterns, predispose them to risk for future cardiometabolic conditions.

Purpose. This novel 8-week randomized control parallel-arm study compared the effects of a daily 18-hour Time-Restricted Feeding protocol vs. an 8-hour fast on diet quality in college students. Secondary outcomes were resting

ABSTRACT

Background. College students’ modifiable health behaviors, including unhealthful eating patterns, predispose them to risk for future cardiometabolic conditions.

Purpose. This novel 8-week randomized control parallel-arm study compared the effects of a daily 18-hour Time-Restricted Feeding protocol vs. an 8-hour fast on diet quality in college students. Secondary outcomes were resting morning blood pressure, biomarkers of glucose regulation, biomarkers of lipid metabolism, and anthropometric measures.

Methods. Eighteen healthy college students (age = 23 ± 4 years; BMI = 23.2 ± 2.3 kg/m2; MET = 58.8 ± 32.9 min/wk) completed this study. Participants were randomized to a daily 18-hour fasting protocol (Intervention; n = 8) or a daily 8-hour fasting protocol (Control; n = 10) for eight weeks. One ‘cheat’ day was permitted each week. Outcomes were measured at weeks 0 (baseline), 4, and 8. A non-parametric Mann Whitney U test was used to compare the week 4 change from baseline between groups. Statistical significance was set at p≤0.05.

Results. Diet quality (p = 0.030) and body weight (p = 0.016) improved from baseline to week 4 for the INV group in comparison to the CON group. The data suggest these improvements may be related to reductions in snacking frequency and increased breakfast consumption. Fasting blood glucose and hip circumference tended to improve for the INV group in comparison to the CON group (p = 0.091 and p = 0.100). However, saturated fat intake tended to increase in the INV group in comparison to the CON group (p = 0.064). Finally, there were no treatment differences between groups (p>0.05) for the 4-week change in total calories, dietary vitamin C, added sugars, resting systolic blood pressure, resting diastolic blood pressure, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), low-density lipoprotein (LDL) cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, waist circumference, or MET.

Conclusion. These data, although preliminary, suggest that the 18-hour fasting protocol was effective for improving diet quality and reducing weight in comparison to the 8-hour fasting protocol in healthy college students. Future intervention trials will need to confirm these findings and determine the long-term relevance of these improvements for health outcomes.
ContributorsMayra, Selicia (Author) / Johnston, Carol (Thesis advisor) / Sears, Dorothy (Committee member) / Swan, Pamela (Committee member) / Sweazea, Karen (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2020
132124-Thumbnail Image.png
Description
As the 7th leading cause of death in the world, with over 1.6 millions deaths attributed to it in 2016 alone, diabetes mellitus has been a rising global health concern. Type 1 diabetes is caused by lack of insulin production whereas type 2 diabetes is caused by insulin resistance. Both

As the 7th leading cause of death in the world, with over 1.6 millions deaths attributed to it in 2016 alone, diabetes mellitus has been a rising global health concern. Type 1 diabetes is caused by lack of insulin production whereas type 2 diabetes is caused by insulin resistance. Both types of diabetes lead to increased glucose levels in the body if left untreated. This, in turn, leads to the development of a host of complications, one of which is ischemic heart disease. Accounting for the death of 16% of the world’s population, ischemic heart disease has been the leading cause of death since 2000. As of 2019, deaths from this disease have risen from 2 million to over 8.9 million globally. While medicine exists to counter the negative outcomes of diabetes mellitus, lower income nations suffer from the lack of availability and high costs of these medications. Therefore, this systematic review was performed to determine whether a non-medicinal treatment could provide similar therapeutic benefits for individuals with diabetes. Genistein is a phytoestrogen found in soy-based products, which has been potentially linked with preventing diabetes and improving diabetes-related symptoms such as hyperglycemia and abnormal insulin levels. We searched PubMed and SCOPUS using the terms ‘genistein’, ‘diabetes’, and ‘glucose’ and identified 32 peer-reviewed articles. In general, preclinical studies demonstrate that genistein decreases body weight as well as circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. It also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies of genistein in general reported no significant relationship between genistein and body mass, circulating glucose, serum insulin, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity, delay type 2 diabetes onset and improve serum triglyceride levels. In summary, preclinical and clinical studies suggest that genistein may help delay onset of type 2 diabetes and improve several symptoms associated with the disease. By translating these findings into clinical settings, genistein may offer a cost effective natural approach at mitigating complications associated with diabetes, although additional research is required to confirm these findings.
ContributorsJain, Rijul (Author) / Sweazea, Karen (Thesis director) / Al-Nakkash, Layla (Committee member) / Bolch, Charlotte (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-04-16
131932-Thumbnail Image.png
Description
Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of

Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of hyperglycemia-related complications, making them ideal for the development of new diabetes treatments with the potential for human application. Previous studies conducted by the Sweazea Lab at Arizona State University aimed to use diet as a means to raise blood glucose in mourning doves (Zenaida macroura) in order to better understand the mechanisms they utilize to stave off oxidative damage. These protocols used dietary interventions—a 60% high fat (HF) “chow” diet, and a high carbohydrate (HC) white bread diet—but were unsuccessful in inducing pathologies. Based on this research, we hypothesized that a model of an urban diet (high in fat, refined carbohydrates, and sodium) might impair vasodilation, as the effect of this diet on birds is currently unknown. We found that tibial vasodilation was significantly impaired in birds fed an urban diet compared to those fed a seed diet. Unexpectedly, vasodilation in the urban diet group was comparable to data of wild-caught birds from previous research, possibly indicating that the birds had already been eating a diet similar to this study’s urban diet before they were caught. This may constitute evidence that the seed diet improved vasodilation while the urban diet more closely mimicked the diet of the birds before the trial, suggesting that the model of the urban diet acted as the control diet in this context. This study is the first step in elucidating avian mechanisms for dealing with diabetogenic diets and has potential to aid in the development of treatments for humans with metabolic syndrome.
ContributorsRenner, Michael William (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Basile, Anthony (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05