Matching Items (7)
Filtering by

Clear all filters

150407-Thumbnail Image.png
Description
Acceptance of the plant group Martyniaceae as a distinct family has long been questioned. Previously placed in the family Pedaliaceae, the Martyniaceae have been allied to numerous other families within the order Lamiales. The objectives of this study include the investigation of the placement of the Martyniaceae within the order

Acceptance of the plant group Martyniaceae as a distinct family has long been questioned. Previously placed in the family Pedaliaceae, the Martyniaceae have been allied to numerous other families within the order Lamiales. The objectives of this study include the investigation of the placement of the Martyniaceae within the order Lamiales using molecular data (chloroplast DNA sequences), the further examination of the internal relationships of the Martyniaceae using an expanded nuclear and chloroplast sequences data set, and the construction of a taxonomic treatment of the family that includes all published names and taxa in the Martyniaceae. An analysis of the Lamiales using two chloroplast gene regions (ndhF and rps16) reveals that the Martyniaceae should be segregated from the family Pedaliaceae, but is not able to support the placement of any of its putatively-related families as sister to the Martyniaceae. Sequences from 151 taxa of the Lamiales are included in the analysis, including six representatives from the Martyniaceae. An analysis of the Martyniaceae using three chloroplast gene regions (psbA-trnH spacer, trnQ-5'rps16 intergenic spacer, and trnS-trnG-trnG spacer and intron) and the Internal Transcribed Spacer resolves two major clades within the Martyniaceae corresponding to the North American taxa (Martynia and Proboscidea) and the South American taxa (Craniolaria, Holoregmia, and Ibicella). Sequences from all five genera and 15 taxa were included in the analysis. Results from the molecular phylogenetic analyses are incorporated into a revised taxonomic treatment of the family. Five genera and thirteen species are recognized for the family Martyniaceae.
ContributorsGutiérrez, Raúl (Author) / Wojciechowski, Martin F (Thesis advisor) / Pigg, Kathleen B (Committee member) / Landrum, Leslie R (Committee member) / Butterworth, Charlie (Committee member) / Arizona State University (Publisher)
Created2011
150811-Thumbnail Image.png
Description
Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and lack of efficient co-expression vectors for the production of multi-protein complexes. This study report that tobacco Extensin (Ext) gene 3' untranslated region (UTR) can be broadly used to enhance recombinant protein expression in plants. Extensin is the hydroxyproline-rich glycoprotein that constitutes the major protein component of cell walls. Using transient expression, it was found that the Ext 3' UTR increases recombinant protein expression up to 13.5- and 6-fold in non-replicating and replicating vector systems, respectively, compared to previously established terminators. Enhanced protein accumulation was correlated with increased mRNA levels associated with reduction in read-through transcription. Regions of Ext 3' UTR essential for maximum gene expression included a poly-purine sequence used as a major poly-adenylation site. Furthermore, modified bean yellow dwarf virus (BeYDV)-based vectors designed to allow co-expression of multiple recombinant genes were constructed and tested for their performance in driving transient expression in plants. Robust co-expression and assembly of heavy and light chains of the anti-Ebola virus monoclonal antibody 6D8, as well as E. coli heat-labile toxin (LT) were achieved with the modified vectors. The simultaneous co-expression of three fluoroproteins using the single replicon, triple cassette is demonstrated by confocal microscopy. In conclusion, this study provides an excellent tool for rapid, cost-effective, large-scale manufacturing of recombinant proteins for use in medicine and industry.
ContributorsRosenthal, Sun Hee (Author) / Mason, Hugh (Thesis advisor) / Mor, Tsafrir (Committee member) / Chang, Yung (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2012
136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction.

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
ContributorsKendle, Robert Player (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Larrimore, Kathy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133844-Thumbnail Image.png
Description
Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high levels of conservation. On its own it is poorly immunogenic and offers little protection against influenza infections, but by combining it with a potent adjuvant, this limitation may be overcome. Recombinant immune complexes, or antigens fused to antibodies that have been engineered to form incredibly immunogenic complexes with one another, were previously shown to be useful, immunogenic platforms for the presentation of various antigens and could provide the boost in immunogenicity that M2e needs to become a powerful universal influenza A vaccine. In this thesis, genetic constructs containing geminiviral replication proteins and coding for a consensus sequence of dimeric M2e fused to antibodies featuring complimentary epitopes and epitope tags were generated and used to transform Agrobacterium tumefaciens. The transformed bacteria was then used to cause Nicotiana benthamiana to transiently express M2e-RICs at very high levels, with enough RICs being gathered to evaluate their potency in future mouse trials. Future directions and areas for further research are discussed.
ContributorsFavre, Brandon Chetan (Author) / Mason, Hugh (Thesis director) / Mor, Tsafrir (Committee member) / Diamos, Andrew (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149463-Thumbnail Image.png
Description
In the United States, Escherichia coli O157:H7 (E. coli O157:H7) is the most frequent cause of hemolytic uremic syndrome (HUS) and it is also the primary cause of acute renal failure in children. The most common route of the infection is ingestion of contaminated meat or dairy product originating from

In the United States, Escherichia coli O157:H7 (E. coli O157:H7) is the most frequent cause of hemolytic uremic syndrome (HUS) and it is also the primary cause of acute renal failure in children. The most common route of the infection is ingestion of contaminated meat or dairy product originating from cattle or vegetables contaminated with bovine manure. Since cattle are the main reservoir for human infection with E. coli O157:H7, the reduction of intestinal colonization by these bacteria in cattle is the best approach to prevent human infections. Intimin is an outer membrane protein of E. coli O157:H7 that plays an important role in adhesion of the bacteria to the host cell. Hence, I proposed to express intimin protein in tomato plants to use it as a vaccine candidate to reduce or prevent intestinal colonization of cattle with E. coli O157:H7. I expressed His-tagged intimin protein in tomato plants and tested the purified plant-derived intimin as a vaccine candidate in animal trials. I demonstrated that mice immunized intranasally with purified tomato-derived intimin produced intimin-specific serum IgG1and IgG2a, as well as mucosal IgA. I further demonstrated that mice immunized with intimin significantly reduced time of the E. coli O157:H7 shedding in their feces after the challenge with these bacteria, as compared to unimmunized mice. Shiga toxin is the major virulence factor that contributes to HUS. Since Shiga toxin B subunit has an important role in the attachment of the toxin to its receptor, I fused intimin to Shiga toxin B subunit to create multivalent subunit vaccine and tested the effects upon immunization of mice with the B subunit when combined with intimin. His-tagged intimin, Shiga toxin B subunit, and Shiga toxin-intimin fusion proteins were expressed in E. coli and purified. I demonstrated that this multivalent fusion protein vaccine candidate elicited intimin- and Shiga toxin B-specific IgG1, IgG2a, and IgA antibodies in mice. I also showed a reduction in the duration of the bacterial shedding after the challenge compared to the control sham-immunized groups.
ContributorsTopal, Emel (Author) / Mason, Hugh S. (Thesis advisor) / Bingham, Scott E. (Committee member) / Mor, Tsafrir (Committee member) / Roberson, Robert W. (Committee member) / Arizona State University (Publisher)
Created2010
149381-Thumbnail Image.png
Description
The Juglandaceae (walnuts, hickories, pecans) has one of the best-documented fossil records in the Northern Hemisphere. The oldest modern genus, Cyclocarya, today restricted to China, first appears in the late Paleocene (57 ma) of North Dakota, USA. Unlike walnuts and pecans that produce edible fruits dispersed by mammals, Cyclocarya fruits

The Juglandaceae (walnuts, hickories, pecans) has one of the best-documented fossil records in the Northern Hemisphere. The oldest modern genus, Cyclocarya, today restricted to China, first appears in the late Paleocene (57 ma) of North Dakota, USA. Unlike walnuts and pecans that produce edible fruits dispersed by mammals, Cyclocarya fruits are small nutlets surrounded by a prominent circular wing, and are thought to be wind- or water-dispersed. The current study provides the first evidence that fossil fruits were different from modern forms in the number and organization of their attachment to reproductive branches, and in their anatomical structure. Unlike the modern genus that bears separate pistillate and staminate flowers the fossil fruits had attached pollen-bearing structures. Unisexual pollen catkins are also present, suggesting the fossil Cyclocarya may have differed from its modern relative in this feature. Like several other plants from the late Paleocene Almont/Beicegel Creek floras, Cyclocarya shows a mosaic combination of characters not seen in their modern counterparts. Fossils were collected from the field, and examined for specimens exposed on the weathered rock surface. Specimens from Almont were photographed with reflected light, while those from Beicegel Creek cut into slabs and prepared by etching the rock matrix in 49% hydrofluoric and re-embedding the exposed plant material in cellulose acetate and acetone to make "peels". Selected specimens are cut out, mounted on microscope slides, and studied with light microscopy. These fossil fruits were studied because they are the earliest fossil evidence of Cyclocarya. They are exceptionally preserved and thus provide critical structural evidence for changes in that occurred during the evolution of plants within this lineage. Because Cyclocarya fruits are winged, they might be assumed to be wind-dispersed. Their radial symmetry does not have the aerodynamic qualities typical of wind-dispersed fruits, and may have been dispersed by water.
ContributorsTaylor, Malcom DeWitt (Author) / Pigg, Kathleen B (Thesis advisor) / Wojciechowski, Martin F (Committee member) / Devore, Melanie L (Committee member) / Farmer, Jack (Committee member) / Gill, Anthony (Committee member) / Arizona State University (Publisher)
Created2010
131096-Thumbnail Image.png
Description
HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to be produced. The HIV-1 envelope glycoprotein41 and the Gag structural protein have been identified to be particularly important in HIV-1 transcytosis and cytotoxic lymphocyte response, respectively. Enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of glycoprotein (dgp41) comprising the membrane proximal external region (MPER), transmembrane domain and cytoplasmic tail may present a unique and safe way of presenting these proteins in a state mimicking their natural formation. Another form of presenting the immunogenic glycoprotein41, particularly the MPER component, is by presenting it onto the N-terminal of an IgG molecule, thereby creating an IgG fusion molecule. In our lab, both VLPs and IgG fusion molecules are highly expressed and purified within GnGn Nicotiana benthamiana. The results indicated that these recombinant proteins can be assembled properly within plants and can elicit an immune response in mice. This provides a preliminary step in using such Gag/dpg41 VLPs and RIC as present a safe, effective, and inexpensive HIV vaccine.
ContributorsGarcia, Izamar (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05