Matching Items (5)
Filtering by

Clear all filters

152972-Thumbnail Image.png
Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

ContributorsMiessner Cook, Elizabeth (Author) / Hall, Sharon J (Thesis advisor) / Boone, Christopher G (Committee member) / Collins, Scott L. (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2014
136192-Thumbnail Image.png
Description
Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore,

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.
ContributorsHalcomb, Michael Jordan (Author) / Chen, Qiang (Thesis director) / Steele, Kelly (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor)
Created2015-05
149520-Thumbnail Image.png
Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

ContributorsGade, Kristin Joan (Author) / Kinzig, Ann P (Thesis advisor) / Grimm, Nancy (Committee member) / Perrings, Charles (Committee member) / Robbins, Paul (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
149404-Thumbnail Image.png
Description
Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used

Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used to produce Ebola immune complex (EIC) in plant leaves and tested it as an Ebola vaccine. The EIC was produced in Nicotiana benthamiana leaves by fusing Ebola virus glycoprotein (GP1) to the C-terminus of heavy chain of 6D8 monoclonal antibody (mAb), which is specific to the 6D8 epitope of GP1, and co-expressing the fusion with the light chain of 6D8 mAb. EIC was purified by ammonium sulfate precipitation and protein A or protein G affinity chromatography. EIC was shown to be immunogenic in mice, but the level of antibody against Ebola virus was not sufficient to protect the mice from lethal the Ebola challenge. Hence, different adjuvants were tested in order to improve the immunogenicity of the EIC. Among several adjuvants that we used, Poly(I:C), which is a synthetic analog of double-stranded ribonucleic acid that can interact with a Toll-like receptor 3, strongly increased the efficacy of our Ebola vaccine. The mice immunized with EIC co-administered with Poly(I:C) produced high levels of neutralizing anti-Ebola IgG, and 80% of the mice were protected from the lethal Ebola virus challenge. Moreover, the EIC induced a predominant T-helper type 1 (Th1) response, whereas Poly(I:C) co-delivered with the EIC stimulated a mixed Th1/Th2 response. This result suggests that the protection against lethal Ebola challenge requires both Th1 and Th2 responses. In conclusion, this study demonstrated that the plant-produced EIC co-delivered with Poly(I:C) induced strong and protective immune responses to the Ebola virus in mice. These results support plant-produced EIC as a good vaccine candidate against the Ebola virus. It should be pursued further in primate studies, and eventually in clinical trials.
ContributorsPhoolcharoen, Waranyoo (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Thesis advisor) / Arntzen, Charles J. (Committee member) / Change, Yung (Committee member) / Ma, Julian (Committee member) / Arizona State University (Publisher)
Created2010
131473-Thumbnail Image.png
Description
Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein expression. For this project two different plant viral vectors were compared; the geminiviral vector derived from Bean yellow dwarf virus (BeYDV) and the MagnICON vector system derived from Tobacco Mosaic Virus(TMV) and Potato Virus X(PVX). E16, an antibody against West Nile virus, has previously been expressed using both systems but expression levels between the systems were not directly compared. Agrobacterium tumefaciens EHA105 cells were transformed with both systems and expression levels of E16 were quantified using ELISAs. Results showed very low expression levels of E16 using the geminiviral vector indicating a need for further investigation into the clone used as previous studies reported much higher expression levels with the system.
ContributorsMurphy, Skylar (Author) / Chen, Qiang (Thesis director) / Jugler, Collin (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05