Matching Items (24)

133844-Thumbnail Image.png

The Development of a Plant-Expressed M2e-Based Universal Influenza Vaccine

Description

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins,

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high levels of conservation. On its own it is poorly immunogenic and offers little protection against influenza infections, but by combining it with a potent adjuvant, this limitation may be overcome. Recombinant immune complexes, or antigens fused to antibodies that have been engineered to form incredibly immunogenic complexes with one another, were previously shown to be useful, immunogenic platforms for the presentation of various antigens and could provide the boost in immunogenicity that M2e needs to become a powerful universal influenza A vaccine. In this thesis, genetic constructs containing geminiviral replication proteins and coding for a consensus sequence of dimeric M2e fused to antibodies featuring complimentary epitopes and epitope tags were generated and used to transform Agrobacterium tumefaciens. The transformed bacteria was then used to cause Nicotiana benthamiana to transiently express M2e-RICs at very high levels, with enough RICs being gathered to evaluate their potency in future mouse trials. Future directions and areas for further research are discussed.

Contributors

Agent

Created

Date Created
  • 2018-05

134712-Thumbnail Image.png

Plant Productivity of Various Plants Grown in Coffee Grounds

Description

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to the soil to increase plant productivity. The objective of this experiment was to test how different concentrations of roasted coffee grounds would affect the overall plant productivity when introduced in the soil of various plant types and environmental atmospheres. Three treatments were selected (100% potting mix, 50% potting mix/50% coffee grounds, and 25% potting mix/75% coffee grounds) and applied to 3 acid-tolerating plants (radish, basil, and parsley). Each of these treatments were grown in 2 different environments, where one was planted in a Tempe, AZ backyard while the other group was planted in a lab environment, locating at Arizona State University's Tempe Campus. Each plant with its respective treatments (plant type, coffee ground treatment, and environment) had 10 identical plants for statistical accuracy, resulting in a total of 180 plants grown, observed, and analyzed for this 3-month long experiment. The plant development, plant height, length of roots, quantity of leaves, and environmental observations were recorded and used to define plant productivity in this investigation. The experiment demonstrated low survival rates in all groups including the control group, suggesting a flaw in the experimental design. Nonetheless, the experiment showed that among the surviving plants, the 75% treatment had the largest negative impact on plant productivity. The measured root lengths and leaf quantity had various results across each plant group, leaving the hypothesis unverified. Overall, the experiment was effective in demonstrating negative impacts of great concentrations of coffee grounds when introduced to various plants, but further investigation with an adjusted experimental design will need to be completed to reach a reliable conclusion.

Contributors

Agent

Created

Date Created
  • 2016-12

131473-Thumbnail Image.png

Evaluation of Plant-based Viral Vectors for West Nile Virus Antibody Expression Levels

Description

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein expression. For this project two different plant viral vectors were compared; the geminiviral vector derived from Bean yellow dwarf virus (BeYDV) and the MagnICON vector system derived from Tobacco Mosaic Virus(TMV) and Potato Virus X(PVX). E16, an antibody against West Nile virus, has previously been expressed using both systems but expression levels between the systems were not directly compared. Agrobacterium tumefaciens EHA105 cells were transformed with both systems and expression levels of E16 were quantified using ELISAs. Results showed very low expression levels of E16 using the geminiviral vector indicating a need for further investigation into the clone used as previous studies reported much higher expression levels with the system.

Contributors

Agent

Created

Date Created
  • 2020-05

131096-Thumbnail Image.png

Plant-derived Virus-like Particles and Recombinant Immune Complexes as Potential Components of a Future HIV Vaccine

Description

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to be produced. The HIV-1 envelope glycoprotein41 and the Gag structural protein have been identified to be particularly important in HIV-1 transcytosis and cytotoxic lymphocyte response, respectively. Enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of glycoprotein (dgp41) comprising the membrane proximal external region (MPER), transmembrane domain and cytoplasmic tail may present a unique and safe way of presenting these proteins in a state mimicking their natural formation. Another form of presenting the immunogenic glycoprotein41, particularly the MPER component, is by presenting it onto the N-terminal of an IgG molecule, thereby creating an IgG fusion molecule. In our lab, both VLPs and IgG fusion molecules are highly expressed and purified within GnGn Nicotiana benthamiana. The results indicated that these recombinant proteins can be assembled properly within plants and can elicit an immune response in mice. This provides a preliminary step in using such Gag/dpg41 VLPs and RIC as present a safe, effective, and inexpensive HIV vaccine.

Contributors

Agent

Created

Date Created
  • 2020-05

137870-Thumbnail Image.png

The Supermarket Game: An Internet Teaching Tool Designed to Enhance Understanding of Economically Important Food Plants

Description

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).

Contributors

Agent

Created

Date Created
  • 2012-12

148475-Thumbnail Image.png

Food Waste Fertilizer Efficacy

Description

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we investigated the possibility of utilizing a fertilizer derived from food waste to grow hydroponic vegetables. Arugula (Eruca sativa) ‘Slow Bolt’ and lettuce (Lactuca sativa) ‘Cherokee’ and ‘Rex’ were cultivated using indoor deep-flow hydroponic systems at 23 ºC under a photosynthetic photon flux density of 170 µmol∙m−2∙s−1 with an 18-hour photoperiod. Plant nutrient solutions were provided by food waste fertilizer or commercial 15:5:20 NPK fertilizer at the identical electrical conductivity (EC) of 2.3 mS·cm–1. At the EC of 2.3 mS·cm–1, chemical fertilizer contained 150 ppm N, 50 ppm P, and 200 ppm K, while food waste fertilizer had 60 ppm N, 26 ppm P, and 119 ppm K. Four weeks after the nutrient treatments were implemented, compared to plants grown with chemical fertilizer, lettuce ‘Rex’ grown with food waste fertilizer had four less leaves, 27.1% shorter leaves, 68.2% and 23.1% less shoot and root fresh weight, respectively. Lettuce ‘Cherokee’ and arugula grown with food waste fertilizer followed a similar trend with fresh shoot weights that were 80.1% and 95.6% less compared to the chemical fertilizer, respectively. In general, the magnitude of reduction in the plant growth was greatest in arugula. These results suggest that both fertilizers were able to successfully grow lettuce and arugula, although the reduced plant growth with the food waste fertilizer in our study is likely from a lower concentration of nutrients when we considered EC as an indicator of nutrient concentration equivalency of the two fertilizer types.

Contributors

Agent

Created

Date Created
  • 2021-05

136320-Thumbnail Image.png

Is a putative plant-derived analog of the mammalian proline-rich attachment domain causing a human enzyme expressed in plants to undergo tetramerization?

Description

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.

Contributors

Agent

Created

Date Created
  • 2015-05

153990-Thumbnail Image.png

Flora of the upper Verde River, Arizona

Description

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.

Contributors

Agent

Created

Date Created
  • 2015

152972-Thumbnail Image.png

Direct and indirect ecological consequences of human activities in urban and native ecosystems

Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

Contributors

Agent

Created

Date Created
  • 2014

150811-Thumbnail Image.png

Improving expression vectors for recombinant protein production in plants

Description

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and lack of efficient co-expression vectors for the production of multi-protein complexes. This study report that tobacco Extensin (Ext) gene 3' untranslated region (UTR) can be broadly used to enhance recombinant protein expression in plants. Extensin is the hydroxyproline-rich glycoprotein that constitutes the major protein component of cell walls. Using transient expression, it was found that the Ext 3' UTR increases recombinant protein expression up to 13.5- and 6-fold in non-replicating and replicating vector systems, respectively, compared to previously established terminators. Enhanced protein accumulation was correlated with increased mRNA levels associated with reduction in read-through transcription. Regions of Ext 3' UTR essential for maximum gene expression included a poly-purine sequence used as a major poly-adenylation site. Furthermore, modified bean yellow dwarf virus (BeYDV)-based vectors designed to allow co-expression of multiple recombinant genes were constructed and tested for their performance in driving transient expression in plants. Robust co-expression and assembly of heavy and light chains of the anti-Ebola virus monoclonal antibody 6D8, as well as E. coli heat-labile toxin (LT) were achieved with the modified vectors. The simultaneous co-expression of three fluoroproteins using the single replicon, triple cassette is demonstrated by confocal microscopy. In conclusion, this study provides an excellent tool for rapid, cost-effective, large-scale manufacturing of recombinant proteins for use in medicine and industry.

Contributors

Agent

Created

Date Created
  • 2012