Matching Items (3)
Filtering by

Clear all filters

153729-Thumbnail Image.png
Description
CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown

CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown to induce HIV-1 transcytosis-blocking antibodies in mice and rabbits. However, the induction of high-titer MPR specific antibodies with HIV-1 transcytosis blocking ability remains a challenge as the immuno-dominance of CTB overshadows the response to MPR. X-ray crystallography was used to investigate the structure of CTB-MPR with the goal of identifying potential solutions to improve the immune response of MPR. Various CTB-MPR variants were designed using different linkers connecting the two fusion proteins. The procedures for over-expression E. coli and purification have been optimized for each of the variants of CTB-MPR. The purity and oligomeric homogeneity of the fusion protein was demonstrated by electrophoresis, size-exclusion chromatography, dynamic light scattering, and immuno-blot analysis. Crystallization conditions for macroscopic and micro
ano-crystals have been established for the different variants of the fusion protein. Diffraction patterns were collected by using both conventional and serial femto-second crystallography techniques. The two crystallography techniques showed very interesting differences in both the crystal packing and unit cell dimensions of the same CTB-MPR construct. Although information has been gathered on CTB-MPR, the intact structure of fusion protein was not solved as the MPR region showed only weak electron density or was cleaved during crystallization of macroscopic crystals. The MPR region is present in micro
ano-crystals, but due to the severe limitation of the Free Electron Laser beamtime, only a partial data set was obtained and is insufficient for structure determination. However, the work of this thesis has established methods to purify large quantities of CTB-MPR and has established procedures to grow crystals for X-ray structure analysis. This has set the foundation for future structure determination experiments as well as immunization studies.
ContributorsLee, Ho-Hsien (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2015
156732-Thumbnail Image.png
Description
Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry

Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry and human based pathogens have led to the consideration of alternative approaches for controlling disease, such as vaccination. NE causing strains of C. perfringens produce two major toxins, α-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. We have developed a fusion protein combining a non-toxic carboxy-terminal domain of the α-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system. The fusion protein was purified by metal affinity chromatography and used to immunize broiler birds. Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. However, the PlcC-NetB fusion had antibody titers four times that of the bacterially produced toxoids alone. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB is a promising vaccine candidate for controlling NE in poultry.
ContributorsHunter, Joseph G (Author) / Mason, Hugh (Thesis advisor) / Mor, Tsafrir (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
131096-Thumbnail Image.png
Description
HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to be produced. The HIV-1 envelope glycoprotein41 and the Gag structural protein have been identified to be particularly important in HIV-1 transcytosis and cytotoxic lymphocyte response, respectively. Enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of glycoprotein (dgp41) comprising the membrane proximal external region (MPER), transmembrane domain and cytoplasmic tail may present a unique and safe way of presenting these proteins in a state mimicking their natural formation. Another form of presenting the immunogenic glycoprotein41, particularly the MPER component, is by presenting it onto the N-terminal of an IgG molecule, thereby creating an IgG fusion molecule. In our lab, both VLPs and IgG fusion molecules are highly expressed and purified within GnGn Nicotiana benthamiana. The results indicated that these recombinant proteins can be assembled properly within plants and can elicit an immune response in mice. This provides a preliminary step in using such Gag/dpg41 VLPs and RIC as present a safe, effective, and inexpensive HIV vaccine.
ContributorsGarcia, Izamar (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05