Matching Items (3)
Filtering by

Clear all filters

171792-Thumbnail Image.png
Description
Potentiometric instrumentation technologies are widely used across many disciplines of science and engineering providing the ability to measure changes to specific environmental variables through various types of sensor electrodes and selective membranes. However, types I, II, and III potentiometric sensor electrodes are limited by biofouling activity, membrane maintenance, grounding

Potentiometric instrumentation technologies are widely used across many disciplines of science and engineering providing the ability to measure changes to specific environmental variables through various types of sensor electrodes and selective membranes. However, types I, II, and III potentiometric sensor electrodes are limited by biofouling activity, membrane maintenance, grounding sensitivity, thermodynamic variables, and electromagnetic interference. Further, algorithms embedded into instrumentation hardware have impeded the usefulness of such measurements outside of highly controlled environments. Reliability of accurate measurement using these types of senor electrodes is limited to industrial and lab applications in chemistry and nominally active biological environments. Novel innovations in using exotic materials have improved the usefulness of Type II (e.g. tantalum-rubidium-doped titanium) and Type III (e.g. Nafion™ membranes) sensor electrodes, but those sensors are still limited to measuring a single selective parameter. This scope of work investigates utilizing a novel non-selective membrane, or naturally occurring biofilm membrane, as the active sensing surface of a graphite electrode as a new Type IV potentiometric sensor electrode (e.g., the MiProbE™) in biologically active environments. The analysis herein demonstrates decomposition of these non-selective signals into real-time metabolic activity, measurement of key biochemical processes and environmental condition parameters through classical mathematical analysis methods providing the basis of Potentiomics – the characterization and quantification of biochemical metabolic processes in highly dynamic non-equilibrium states.
ContributorsTaylor, Evan (Author) / Weiss, Taylor L (Thesis advisor) / Brown, Albert F (Committee member) / Boyer, Treavor H (Committee member) / Arizona State University (Publisher)
Created2022
161873-Thumbnail Image.png
Description
The intent of this dissertation was to advance the knowledge of the impacts of building design and use on the quality of the potable water. Fluctuations in water use by occupants and equipment can cause stagnant conditions that causes water quality decay such as loss of chlorine disinfectant, an increase

The intent of this dissertation was to advance the knowledge of the impacts of building design and use on the quality of the potable water. Fluctuations in water use by occupants and equipment can cause stagnant conditions that causes water quality decay such as loss of chlorine disinfectant, an increase in microorganism and pathogen growth, an increase in metals concentrations, and an increase in disinfection byproducts. The United States Environmental Protection Agency has drinking water standards for distribution systems, but these standards stop at the meter with exception of the Lead and Copper Rule. There are also building codes to ensure proper plumbing materials are used that come in contact with potable water. However, neither standards nor codes require building water quality monitoring. Therefore, monitoring the building potable water system is an important aspect of building water quality that is not done on a large scale.Chapter 2 investigated how water quality evolved in a “green”, multi-story, institutional building during the first 6 months of building life. The results indicated that Wi-Fi logins could be used to correlate occupancy activity and copper (Cu) concentrations in water. As occupancy activity increased, Cu concentrations decreased. However, chlorine (Cl2) residual (or free chlorine) was only measurable twice at two kitchen sinks via grab sampling during the duration of the 6-month study regardless of occupancy activity. Chapter 3 provided improved understanding of how to carry out effective building water sampling (e.g., grab samples vs real time) and which water quality parameters were most influenced by the building water system during the first year of occupancy in relation to municipal water quality. The results showed the temperature (T), pH, UVA254, a surrogate for organic matter, cellular adenosine triphosphate (cATP), trihalomethanes (THMs), and Cu were always greater inside the building than at building entry while free Cl2 was always lower inside the building than at the building entry. Chapter 4 investigated a remedial flushing program for three schools. Overall, the study showed the quality of water does change after a flushing event. Free Cl2 was reestablished, and metals concentrations decreased. However, equipment flushing, such as hot water heaters, may be necessary to fully remediate Legionella. Lastly, one-time flushing is most likely a temporary solution. A more routine approach to building flushing and monitoring may be necessary until normal or sustained occupancy resumes.
ContributorsRichard, Rain (Author) / Boyer, Treavor H (Thesis advisor) / Hamilton, Kerry A (Committee member) / Ross, Heather M (Committee member) / Arizona State University (Publisher)
Created2021
168764-Thumbnail Image.png
Description
Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This

Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This dissertation investigated combined physical-chemical and microbiological technologies for combined P and N removal from nonpoint sources. Chapter 2 investigated the combination of basic oxygen furnace (BOF) steel slag and woody mulch for P removal by mineral precipitation and N removal by microbial denitrification. When combined with mulch in column experiments, slag with high fines content achieved complete P removal under unsaturated conditions. Batch experiments showed that microbial denitrification occurred under the highly alkaline conditions created by steel slag, but the timescale differential between P and N removal was a critical barrier to combining these treatment technologies. Chapter 3 evaluated a field-scale slag filter to treat agricultural tile drainage and lab-scale column experiments to provide insight on field conditions that impacted P removal. Increases in alkalinity had negative influences on P removal through inhibition of P mineral precipitation by BOF slag, while blast furnace (BF) steel slag was less impacted by alkalinity due to primarily adsorptive P removal. Regeneration strategies were identified based on water quality and slag type.Chapters 4 and 5 explored biological ion exchange (BIEX) as an option for addressing the timescale offset identified in Chapter 1. In Chapter 4 columns fed with dissolved organic matter (DOM) were not regenerated and over 50% DOM removal was observed, with the primary mechanism of removal identified as secondary ion exchange (SIEX) between sulfate and DOM fractions with high affinities for ion exchange. Chapter 5 aimed to expand BIEX to N treatment through batch denitrification and adsorption experiments, which revealed a positive relationship between molecular weight of organic molecules and their ability to displace nitrate. This work shows that by having an improved understanding of impacted water characteristics, the information presented in this work can be used to select and implement effective treatment technologies for decentralized areas.
ContributorsEdgar, Michael Garrett (Author) / Boyer, Treavor H (Thesis advisor) / Hamdan, Nasser (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2022