Matching Items (5)
Filtering by

Clear all filters

148465-Thumbnail Image.png
Description

This project begins with an overview of the female reproductive tract microenvironment. It outlines the microenvironment of the vaginal, cervical, and endometrial epithelium and the interactions with immune cells and hormone cycles. The review also outlines the models currently used to study the female reproductive tract. The second chapter of

This project begins with an overview of the female reproductive tract microenvironment. It outlines the microenvironment of the vaginal, cervical, and endometrial epithelium and the interactions with immune cells and hormone cycles. The review also outlines the models currently used to study the female reproductive tract. The second chapter of the thesis is a study of the effects of pathogenic and commensal bacteria P. micra, F. magna, and F. nucleatum on cervical epithelial cells. This study analyzes cytotoxic effects after 24 hour infection of these bacteria. This was assessed through crystal violet staining, conventional pcr of cDNA synthesized from extracted cervical RNA, and LDH analysis. There is also an attempted biofilm assay. It was concluded that bacteria P. micra, F. magna and F. nucleatum have cytotoxic potential. This was not expected as F. magna is largely understood to be a commensal bacteria in the vaginal microbiome.

ContributorsGarza, Camryn Nicole (Author) / Plaisier, Christopher (Thesis director) / Herbst-Kralovetz, Melissa (Committee member) / School of Molecular Sciences (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
Description
Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60

Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60 years. GBM Tumor formation can either begin as normal brain cells or develop from an existing low-grade astrocytoma and are housed by the perivascular niche in the brain microenvironment. This niche allows for the persistence of a population of cells known as glioma stem cells (GSC) by supplying optimum growth conditions that build chemoresistance and cause recurrence of the tumor within two to five years of treatment. It has therefore become imperative to understand the role of the perivascular niche on GSCs through in vitro modelling in order to improve the efficiency of therapeutic treatment and increase the survival rate of patients with GBM.

In this study, a unique three dimensional (3D) microfluidic platform that permitted the study of intercellular interactions between three different cell types in the perivascular niche of the brain was developed and utilized for the first time. Specifically, human endothelial cells were embedded in a fibrin matrix and introduced into the vascular layer of the microfluidic platform.

After spontaneous formation of a vascular layer, Normal Human Astrocytes and Patient derived GSC were embedded in a Matrigel® matrix and incorporated in the stroma and tumor regions of the microfluidic device respectively.

Using the established platform, migration, proliferation and stemness of GSCs studies were conducted. The findings obtained indicate that astrocytes in the perivascular niche significantly increase the migratory and proliferative properties of GSCs in the tumor microenvironment, consistent with previous in vivo findings.

The novel GBM tumor microenvironment developed herein, could be utilized for further

in-depth cellular and molecular level studies to dissect the influence of individual factors within the tumor niche on GSCs biology, and could serve as a model for developing targeted therapies.
ContributorsAdjei-Sowah, Emmanuella Akweley (Author) / Nikkhah, Mehdi (Thesis advisor) / Plaisier, Christopher (Committee member) / Mehta, Shwetal (Committee member) / Arizona State University (Publisher)
Created2020
Description
Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains

Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains a major obstacle. Previous studies for recombinant protein production has utilized gram-negative hosts such as Escherichia coli (E. coli) due to its well-established genetics and fast growth for recombinant protein production. However, using gram-negative hosts require lysis that calls for additional optimization and also introduces endotoxins and proteases that contribute to protein degradation. This project directly addressed this issue and evaluated the potential to use a gram-positive host such as Brevibacillus choshinensis (Brevi) which does not require lysis as the proteins are expressed directly into the supernatant. This host was utilized to produce variants of Stock 11 (S11) protein as a proof-of-concept towards this methodology. Variants of S11 were synthesized using different restriction enzymes which will alter the location of protein tags that may affect production or purification. Factors such as incubation time, incubation temperature, and media were optimized for each variant of S11 using a robust design of experiments. All variants of S11 were grown using optimized parameters prior to purification via affinity chromatography. Results showed the efficiency of using Brevi as a potential host for domain antibody production in the Stabenfeldt lab. Future aims will focus on troubleshooting the purification process to optimize the protein production pipeline.
ContributorsEmbrador, Glenna Bea Rebano (Author) / Stabenfeldt, Sarah (Thesis director) / Plaisier, Christopher (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165469-Thumbnail Image.png
Description

Glioblastoma (GBM) is the most lethal primary brain tumor in adults with a less than 5% chance of survival beyond 5 years. With few effective therapies beyond the standard of care, there are often treatment resistant recurrences seen in most patients. STAT5 is a protein that has shown to be

Glioblastoma (GBM) is the most lethal primary brain tumor in adults with a less than 5% chance of survival beyond 5 years. With few effective therapies beyond the standard of care, there are often treatment resistant recurrences seen in most patients. STAT5 is a protein that has shown to be upregulated in highly invasive and treatment resistant GBM. Elucidating the role of STAT5 in GBM could reveal a node of therapeutic vulnerability in primary and recurrent GBM.

ContributorsInforzato, Hannah (Author) / Plaisier, Christopher (Thesis director) / Tran, Nhan (Committee member) / Blomquist, Mylan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05