Matching Items (3)
Filtering by

Clear all filters

152012-Thumbnail Image.png
Description
As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.
ContributorsHytowitz, Robin Broder (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
158072-Thumbnail Image.png
Description
Climate change is affecting power generation globally. Increase in the ambient air

temperature due to the emission of greenhouse gases, caused mainly by burning of fossil fuels, is the most prominent reason for this effect. This increase in the temperature along with the changing precipitation levels has led to the melting

Climate change is affecting power generation globally. Increase in the ambient air

temperature due to the emission of greenhouse gases, caused mainly by burning of fossil fuels, is the most prominent reason for this effect. This increase in the temperature along with the changing precipitation levels has led to the melting of the snow packs and increase in the evaporation levels, thus affecting hydropower. The hydropower in the United States might increase by 8%-60% due to Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios respectively by 2050. Wind power generation is mainly affected by the change in the wind speed and solar power generation is mainly affected by the increase in the ambient air temperature, changes in precipitation and solar radiation. Solar power output reduces by approximately a total of 2.5 billion kilowatt- hour (kWh) by 2050 for an increase in ambient air temperature of 1 degree Celsius. Increase in the ambient air and water temperature mainly affect the thermal power generation. An increase in the temperature as per the RCP 4.5 and RCP 8.5 climate change scenarios could decrease the total thermal power generation in the United States by an average of 26 billion kWh and a possible income loss of around 1.5 billion dollars. This thesis discusses the various effects of climate change on each of these four power plant types.
ContributorsPenmetsa, Vikramaditya (Author) / Holbert, Keith E. (Thesis advisor) / Hedman, Mojdeh (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2020