Matching Items (8)
Filtering by

Clear all filters

155089-Thumbnail Image.png
Description
For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales

For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales that make up behavior. Those theories, originating in the study of dynamical systems, suffer from the limitation that fractal analysis reveals only indirect evidence of multiscale interactions. Multiscale interactions must be demonstrated directly because there are many means to generate fractal properties. In two experiments, participants performed a pursuit tracking task while I recorded multiple behavioral and physiological time series. A new analytical technique, multiscale lagged regression, was introduced to capture how those many psychological time series coordinate across multiple scales and time. The results were surprising in that coordination among psychological time series tends to be oscillatory in nature, even when the series are not oscillatory themselves. Those and other results demonstrate the existence of multiscale interactions in psychological systems.
ContributorsLikens, Aaron D (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Cooke, Nancy L (Committee member) / Glenberg, Arthur M. (Committee member) / Arizona State University (Publisher)
Created2016
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017
155568-Thumbnail Image.png
Description
This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.
ContributorsDemir, Mustafa, Ph.D (Author) / Cooke, Nancy J. (Thesis advisor) / Bekki, Jennifer (Committee member) / Amazeen, Polemnia G (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
171608-Thumbnail Image.png
Description
Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a

Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a novel, complex object, and when intentional constraints are imposed. In Experiment 1, methods with which people can identify and improve their control strategy during initial interactions with a complex object were examined. Participants actively restricted their movements at first to simplify the object’s complex behavior, then gradually adjusted movements to improve the system’s predictability. In Experiment 2, predictability of participants’ control strategies was monitored when the intention to act was changed to prioritize speed over stability. Even when incentivized to seek alternative strategies, people still prioritized predictability, and would compensate for the loss of predictability. These experiments furthered understanding of the motor control processes as a whole and may reveal important implications when generalized to other domains that also interact with complex systems.
ContributorsNguyen, Tri Duc (Author) / Amazeen, Eric (Thesis advisor) / Glenberg, Arthur (Committee member) / Amazeen, Polemnia G (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
157958-Thumbnail Image.png
Description
Fractal analyses examine variability in a time series to look for temporal structure

or pattern that reveals the underlying processes of a complex system. Although fractal

property has been found in many signals in biological systems, how it relates to

behavioral performance and what it implies about the complex system under scrutiny are

still

Fractal analyses examine variability in a time series to look for temporal structure

or pattern that reveals the underlying processes of a complex system. Although fractal

property has been found in many signals in biological systems, how it relates to

behavioral performance and what it implies about the complex system under scrutiny are

still open questions. In this series of experiments, fractal property, movement kinematics,

and behavioral performance were measured on participants performing a reciprocal

tapping task. In Experiment 1, the results indicated that the alpha value from detrended

fluctuation analysis (DFA) reflected deteriorating performance when visual feedback

delay was introduced into the reciprocal tapping task. This finding suggests that this

fractal index is sensitive to performance level in a movement task. In Experiment 2, the

sensitivity of DFA alpha to the coupling strength between sub-processes within a system

was examined by manipulation of task space visibility. The results showed that DFA

alpha was not influenced by disruption of subsystems coupling strength. In Experiment 3,

the sensitivity of DFA alpha to the level of adaptivity in a system under constraints was

examined. Manipulation of the level of adaptivity was not successful, leading to

inconclusive results to this question.
ContributorsNguyen, Tri, M.A (Author) / Amazeen, Eric L (Thesis advisor) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Arizona State University (Publisher)
Created2019
157628-Thumbnail Image.png
Description
Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”) processes are reflected in the movements of sway. The

Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”) processes are reflected in the movements of sway. The purpose of this dissertation is to understand the relationship between attention and posture when attention is directly or indirectly shifted away from posture. Using a dual-task paradigm, attention was shifted directly by instructing participants to prioritize the balance task (minimize sway in a unipedal stance) or prioritize the cognitive task (minimize errors in an auditory n-back task) and indirectly by changing the difficulty level of the cognitive task (0-back vs. 2-back task). Postural sway was assessed using sample entropy (SampEn), standard deviation, (SD) and sway path (SP) of trunk movements to measure the regularity, variability, and overall distance of sway travelled, respectively. Dual-task behavior was examined when participants were in a controlled (i.e., non-fatigued) state (Experiment 1), in a state of physical fatigue (Experiment 2), and in a state of mental fatigue (Experiment 3). Across all three experiments, indirectly shifting attention away from posture in the more difficult 2-back task induced less regularity (higher SampEn) and variability (smaller SD) in postural sway. Directly shifting attention away from posture, by prioritizing the cognitive task, induced less regularity (higher SampEn) and a longer path length (higher SP) in Experiment 1, however this effect was not significant for the fatigued participants in Experiments 2 and 3. Neither physical fatigue (Experiment 2) or mental fatigue (Experiment 3) negatively affected postural sway or cognitive performance. Overall, the findings from this dissertation contribute to the relationship between movement regularity and attention in posture, and that the postural behavior that emerges is sensitive to methods in which attention is manipulated (direct, indirect) and fatigue (physical, mental).
ContributorsGibbons, Cameron Todd (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Gray, Rob (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2019
161791-Thumbnail Image.png
Description
In order to perceive the heaviness of an object, one must wield it. This requires muscle activity and its resulting movements. Research has shown that muscle activity and movement combine for this perception in a manner inspired by Newton’s 2nd Law of Motion. Research in this area

In order to perceive the heaviness of an object, one must wield it. This requires muscle activity and its resulting movements. Research has shown that muscle activity and movement combine for this perception in a manner inspired by Newton’s 2nd Law of Motion. Research in this area has relied on specific movement and muscle activity measures that often capture one moment of a lift. The current set of experiments set out to determine which measures best capture the underlying phenomena that lead to heaviness perception during a lift. In the first experiment, participants lifted stimuli with an elbow flexion lift while their muscle activity and movement were recorded. Participants reported their perceived heaviness of the stimuli as soon as they reached it, which resulted in an average decision angle of around 30-degrees. In the second and third experiments, participants the same stimuli with the same elbow flexion lift in four perturbation conditions – they experienced perturbations at 15-degrees of the lift, 30-degrees, 45-degrees, and with no perturbation. In the second experiment, participants experienced a physical perturbation and a cognitive perturbation in the third experiment. Across Experiments 2 and 3, the pattern of results suggested that the more time participants have in a lift, the more proportion correct, muscle activity, and movement measures appears like they do in the no perturbation condition. Additionally, a logistic least absolute shrinkage and selection operator (LASSO) regression was used to determine which measures best predicted perception. Results show that the integrated electromyogram of the biceps brachii that occurs after peak acceleration (iEMG BB after pACC) and Average Acceleration, which are both measures that capture more than one point of a lift, predicted heaviness perception. A new model of heaviness perception was then developed, using these new measures. Comparing this New Model to an Original Model from Waddell et al., 2016 resulted in better prediction from the New Model – suggesting that measure that capture more of a lift better predict heaviness perception, meaning that an entire ongoing action event is important for perception.
ContributorsWaddell, Morgan Leigh (Author) / Amazeen, Eric L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Glenberg, Arthur M (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2021
190910-Thumbnail Image.png
Description
A key contribution of human factors engineering is the concept of workload: a construct that represents the relationship between an operator’s cognitive resources, the demands of their task, and performance. Understanding workload can lead to improvements in safety and performance for people working in critical environments, particularly within action teams.

A key contribution of human factors engineering is the concept of workload: a construct that represents the relationship between an operator’s cognitive resources, the demands of their task, and performance. Understanding workload can lead to improvements in safety and performance for people working in critical environments, particularly within action teams. Recently, there has been interest in considering how the workload of a team as a whole may differ from that of an individual, prompting investigation into team workload as a distinct team-level construct. In empirical research, team-level workload is often considered as the sum or average of individual team members' workloads. However, the intrinsic characteristics of action teams—such as interdependence and heterogeneity—challenge this assumption, and traditional methods of measuring team workload might be unsuitable. This dissertation delves into this issue with a review of empirical work in action teams, pinpointing several gaps. Next, the development of a testbed is described and used to address two pressing gaps regarding the impact of interdependence and how team communications relate to team workload states and performance. An experiment was conducted with forty 3-person teams collaborating in an action team task. Results of this experiment suggest that the traditional way of measuring workload in action teams via subjective questionnaires averaged at the team level has some major shortcomings, particularly when demands are elevated, and action teams are highly interdependent. The results also suggested that several communication measures are associated with increases in demands, laying the groundwork for team-level communication-based measures of team workload. The results are synthesized with findings from the literature to provide a way forward for conceptualizing and measuring team workload in action teams.
ContributorsJohnson, Craig Jonathon (Author) / Cooke, Nancy J (Thesis advisor) / Gutzwiller, Robert S (Committee member) / Holder, Eric (Committee member) / Amazeen, Polemnia G (Committee member) / Arizona State University (Publisher)
Created2023